

LIVING IN SWITZERLAND LEBEN IN DER SCHWEIZ VIVRE EN SUISSE

^b UNIVERSITÄT BERN

The theory behind fixed-effects panel models Fixed-effects panel models in practice

Oliver Lipps

Swiss Centre of Expertise in the Social Sciences (FORS) and University of Bern

Workshop LIVES Doctoral School, 1 November 2022

Content

- 1. Basics of longitudinal data and regression refresher
- 2. Causality and the mechanics of fixed effects (within) regression
- 3. The mechanics of Fixed Effects (within) regression
- 4. Comparison of models
- 5. FE example using the Swiss Household Panel

1. Basics of longitudinal data and regression refresher

Data over time

Cross-sectional data

(repeated cross-sections, e.g., ESS)

Time Series: N small (mostly=1), T large $(T \rightarrow \infty)$

 \rightarrow time series models (finance, macro-economics, demography, ...)

(Prospective) Panel data: N large $(N \rightarrow \infty)$, T small (2- < ca.100) \rightarrow social science panel surveys (sociology, micro-economics, ...)

Example: Transitions in and out of poverty 1. based on repeated cross-sectional data

-> poverty rate over time stable

Example: Transitions in and out of poverty 2. based on panel data

-> individual dynamics can only be measured with panel data!

Panel surveys increasingly important

Changing focus in social sciences

- Repeated observations of same unit:
- \rightarrow Close to **experimental design**: *before and after* studies
- Plus: Life course: social origin, biographical variables, expectations, social context (e.g., household, partner, peers), genetic data:
- → Understand mechanisms -> identify "causal" effects (not just correlates)

Panel data: Pros (+) and Cons (-)

+

- Less measurement issues than retrospectively collected data
- Individual trajectories
- (Better) identify causal effects than just correlations
- Close to experimental design: before and after studies

(Within-individual models)

- High costs (panel care, tracking households, incentives)
- Initial non-response and attrition
- Population representativeness
 (increasingly) challenged
- Complex design and analysis (e.g., combining waves, longitudinal weights)
- Design a panel for next generation of researchers
- Panel conditioning effects

Short regression refresher

(Important) assumptions of OLS regression

General

Random sample from clearly defined population

linear relationship dep./indep. variables

Coefficient estimation No endogeneity; Cov(x,e) = 0

Error estimation No autocorrelation $Cov(e_i, e_k)=0$ Constant variance (no heteroscedasticity) > Inference on population

> Coefficients unbiased

Standard errors of coefficients unbiased

Reasons for endogeneity $(Cov(x,e) \neq 0)$

- Omitted (exogenous) variables
- Simultaneity
- Nonlinearity in parameters (can be tested)

Problems:

- Only **observed** variables controllable
- Selection process (mechanism of who experiences a change in the independent variable) largely unknown
- Parametrization necessary

Model with endogenous variables cannot be interpreted as causal

Poll 1: Panel surveys and repeated cross-sections

Which statements are correct? (all that apply)

- 1. Thanks to refreshment samples, panels are more representative of the population
- 2. Panels are better able to identify selection into the treatment
- 3. Repeated cross-sections cannot capture persongroup trajectories

2. Causality and the counterfactual

Description vs. causality

We distinguish:

Descriptive statement :

Y for *individuals with* D=1 (treatment) versus Y for *individuals with* D=0 (control)

example: income of people with a master degree and people without

and

• Causal statement (implying the counterfactual): Y for *individual i, had i D=1 instead of D=0* "effect" of D on Y?

example: income of i, had i a master degree instead of no master degree.

The counterfactual

Group	Condition	Y ¹	Y ⁰
Treatment group (D=1)		У ₁	counterfact
Control group (D=0)		counterfact	Уo

- Each unit i has two *potential* outcomes: Y_i^1 and Y_i^0
- Question: «what if …»
- Fundamental Problem of Causal Inference (Holland 1986): never both potential results observable for the same unit
 -> treatment effect cannot be identified!

Identifying treatment effect 1: experiment

- Randomized experiment with treatment- and control group
 - gold standard: independence of treatment D and potential result Y
 - selection problem solved on design level (no self selection)
- Problem experiment in social sciences
 - often impossible, too expensive or ethically not feasible (death penalty!)
 - often difficult to conduct (e.g., effect of different class sizes: Star-experiment, smoking "experiment")
 - often small sample sizes

Identifying treatment 2: "conditioning on observables"

 Control for a (categorical) variable is equivalent to analysis within categories of this variable

Methods:

- Stratification
- Regression
- Matching

Example treatment effect: master degree – income

Group	Condition	$E[Y^{1} D]$	E[Y ⁰ D]
Treatment group (D=1 = with master	degree)	10	
Control group (D=0 = no master degi	ree)		5

Fundamental Question: which part of the mean difference of 5 is due to

- Additional qualifications from the master degree (causal effect)?
- Characteristics of people who earn a master degree, had they not earned it (**selection** effect)?

Example: master degree – income (with counterfactual)

Group	Condition	$E[Y^{1} \mid D]$	$E[Y^{0} \mid D]$
Treatment group (D=1 = with master	degree)	10	6
Control group (D=0 = no master degi	ree)	8	5

If 50% have a master degree:

- \Rightarrow Causal effect = 3.5 (= .5*4 + .5*3) = Average Treatment Effect (ATE)
- ➡ Mean difference (=5) biased! Error = 5 - 3.5 = 1.5

Error Components:

- Baseline selection bias = 6 5 = 1 (those with master earn more anyway; easy to calculate)
- *Treatment selection bias* = .5 (those with master benefit more from master)

Idea: partition sample into subsamples with no baseline and no treatment selection. Then condition on variables which identify such strata.

Example: baseline and treatment selection bias

Example: control variable x eliminates bias

Regression: y = 5 + 5 * x + 10 * d (without x: 6.67+11.67*d+err. !), ATE=10							
	У ¹ _{<i>i</i>}	У ⁰ <i>i</i>	y _{<i>i</i>} (obs.)	d _i	х _і	error (without x)	
Treatment group	20	10	20	1	1	3.33+1.67=5	
Treatment group	20	10	20	1	1	3.33+1.67=5	
Treatment group	15	5	15	1	0	-1.67-3.33=-5	
Control group	20	10	10	0	1	3.33+1.67=5	
Control group	15	5	5	0	0	-1.67-3.33=-5	
Control group	15	5	5	0	0	-1.67-3.33=-5	

Because **Cov(d, e) | x = 0** (Cov(d,e)=0 within groups of x): Estimate of **d unbiased**!

Cov(d, e) > 0 (coefficient 11.67 too large)

When control variables?

All associations come from 3 elementary configurations:

Chains: $A \rightarrow B$ or $A \rightarrow C \rightarrow B$ etc.

controlling C blocks causal Path \bullet^{\times} ("overcontrol")

• Forks:

$A \leftarrow C \rightarrow B$

controlling C solves Problem des «omitted variable bias» $\sqrt{(confounding)}$

• inverted Forks: $A \rightarrow C \leftarrow B$

controlling C causes collider variable bias («endogenous selection bias»)

Collider bias: a hypothetical example

Actor

Beauty

Beauty and talent independent among *applicants* to Hollywood (all)

Both are positively correlated with becoming a Hollywood actor (upper right)

However, beauty and talent are negatively correlated when the applicants are divided into admitted (upper right) and rejected applicants (lower left)

We create a spurious negative association between beauty and talent by controlling for a collider (Actor/No Actor)

Poll 2: Causality and the counterfactual

Which statements are correct? (all that apply)

- 1. Panels include counterfactual values
- 2. error = difference between observed and counterfactual value (of the treatment conditions)
- 3. ATE = difference between observed and counterfactual value (of the treatment groups)

3. The mechanics of Fixed Effects (within) regression

Variance decomposition: total / within / between

Total Variance ${(3-0)^2 + (2-0)^2 + (-1-0)^2 + (-4-0)^2} / 4$ = (9+4+1+16)/4 = 7.5

3

2

-1

-4

Total

Mean

(=0)

Between Variance $(2.5-0)^2+(-2.5-0)^2)/2 = 6.25$ =82% of total variance (intra-class-correlation)

Within Variance $((3-2.5)^2+(2-2.5)^2+(-1-(-2.5))^2+(-4-(-2.5))^2)/4 = 1.25$ =18% of total variance

Target: in regression equation: $y_{it} = \alpha + \beta x_{it} + e_{it}$ error decomposition $e_{it} = \alpha_i + \varepsilon_{it}$

-> Regression equation: $y_{it} = \alpha + \beta x_{it} + \alpha_i + \varepsilon_{it}$

Modeling variance in panel regression models

Total

variance

- Pooled OLS

Within

Variance

- Fixed effects (FE): current value minus mean value
- DID (Difference in Difference): FE with control for common trends
- First difference (FD): current value minus previous value

Within and between variance

- Random effects

(Multilevel): Weighted mean between OLS and FE

- Hybrid Sum of FE and BE

The counterfactual and panel models

- Counterfactual in an ideal world : $Y_{i,t}^{Treat} Y_{i,t}^{NonTreat}$
- Cross-sectional data: **selection effects!** $Y_{i.t}^{Treat} Y_{i.t}^{NonTreat}$

Panel data I: within-estimator (FE)

 $Y_{it}^{TimesTreat(i)} - Y_{it}^{TimesNonTreat(i)}$

Panel data II: "difference-in-difference" (DiD: i:treated, j:nontreated): $(Y_{i.t}^{TimesTreat(i)} - Y_{i.t}^{TimesNonTreat(i)}) - (Y_{i.t}^{TimesTreat(i)} - Y_{i.t}^{TimesNonTreat(i)})$

=controls for common trend

 $Y_{i,t+1} - Y_{i,t}$

Panel data III: first difference (FD):

Fixed-effects Models (FE): Properties

FE model: Only within-variance (we hope that it is exogenous)
⇒ gets rid of all unobserved time-invariant individual heterogeneity
⇒ can only model time-variant control variables

DiD (Difference-in-Difference)-models

Use own pre-treatment and trend of control group as counterfactual

Poll 3: Panel regression models

Which statements are correct? (all that apply)

- 1. FE is unbiased, OLS is biased
- 2. OLS is unbiased, FE is biased
- 3. FE includes the individual trend

Small-N example: FE

Partner and Happiness: hypothetical data

	+-	· .			+		'	- A	timo		, nontron l
	I	ıd	time	satlife	partner		1	Ia	LTING	Satille	partner
	-						-				
1.	I	1	1	2	0	13.	I	3	1	5.8	0
2.	Ι	1	2	2.1	0	14.	I	3	2	6	0
3.	Ι	1	3	1.9	0	15.	Ι	3	3	6.2	0
4.	Ι	1	4	2	0	16.	I	3	4	7	1
5.	Ι	1	5	2.2	0	17.	T	3	5	6.9	1
6.	I	1	6	1.8	0	18.	T	3	6	7.1	1
	-						-				
7.	Ι	2	1	4	0	19.	I	4	1	7.9	0
8.	Ι	2	2	3.9	0	20.	Ι	4	2	8.1	0
9.	Ι	2	3	4.1	0	21.	Ι	4	3	8	0
10.	Ι	2	4	4	0	22.	T	4	4	9	1
11.	Ι	2	5	3.9	0	23.	I	4	5	9.2	1
12.	I	2	6	4.1	0	24.	T	4	6	8.8	1
	-						+-				+

Problem: self-selection into partnership

Individuals with or without a partner differ by characteristics, which have effects on partnership AND happiness (confounders)

Cross-sectional regression?

 $\beta_{t=4} = (9+7)/2 - (4+2)/2 = 8-3 = 5$ is massively biased!

Interpretation: Mean happiness of individuals with partner minus mean happiness of individuals without partner at time t=4

35

Pooled OLS no solution

 $\beta_{\text{pooled}} = 3.67$
Example (continuous treatment): Omitted time-invariant variable bias BMI (Y) and smoking (X):

Hypothesis: smoking reduces BMI

Hypothetical data from 15 individuals: pooled OLS

Pooled OLS Regression (w/out and w/ cluster control)

· reg bint cro	<mark>garettes</mark>					
Source	SS	df	MS	Number of o	bs =	60
	+			F(1, 58)	=	1.24
Model	5.40476902	1	5.40476902	Prob > F	=	<mark>0.2708</mark>
Residual	253.602348	58	4.37245428	R-squared	=	0.0209
	+			Adj R-squa	red =	0.0040
Total	259.007117	59	4.38995114	Root MSE	=	2.091
bmi	Coef.	Std. Err.	t	P> t [95	% Conf.	Interval]
	+					
cigarettes	0380385	.0342135	1.11	0.27103	04473	.1065243
_cons	<mark>25.81743</mark>	. <mark>6655684</mark>	38.79	0.000 24.	48515	27.14971
<mark>. reg bmi ciga</mark>	<mark>arettes, vce(c</mark>	<mark>l id)</mark>				
Linear regress	sion			Number of obs	=	60
				F(1, 14)	=	1.19
				F(1, 14) Prob > F	=	1.19 <mark>0.2947</mark>
				F(1, 14) Prob > F R-squared	= = =	1.19 <mark>0.2947</mark> 0.0209
				F(1, 14) Prob > F R-squared Root MSE	= = =	1.19 <mark>0.2947</mark> 0.0209 2.091
				F(1, 14) Prob > F R-squared Root MSE	= = =	1.19 <mark>0.2947</mark> 0.0209 2.091
		(<mark>Std. Err. a</mark>	F(1, 14) Prob > F R-squared Root MSE <mark>djusted for 1</mark>	= = = 5 cluste	1.19 0.2947 0.0209 2.091 ers in id)
		(Robust	<mark>Std. Err. a</mark>	F(1, 14) Prob > F R-squared Root MSE <mark>djusted for 1</mark>	= = = 5 cluste	1.19 0.2947 0.0209 2.091 ers in id)
 bmi	Coef.	(Robust Std. Err.	<mark>Std. Err. a</mark> t	F(1, 14) Prob > F R-squared Root MSE djusted for 1 P> t [95	= = = 5 cluste % Conf.	1.19 0.2947 0.0209 2.091 ers in id) Interval]
bmi cigarettes	Coef.	(Robust Std. Err.	Std. Err. a t 1.09	F(1, 14) Prob > F R-squared Root MSE djusted for 1. P> t [95 	= = = 5 cluste % Conf. 	1.19 0.2947 0.0209 2.091 ers in id) Interval]

Omitted variable: Social class!

BMI and number of cigarettes

Within Class Regression

. reg bmi class##c.cigarettes, vce(cl id) noci

Linear regression

Number of obs	=	60
F(7, 14)	=	61.99
Prob > F	=	0.0000
R-squared	=	0.7920
Root MSE	=	1.018

(Std. Err. adjusted for 15 clusters in id)

 bmi	Coef.	Robust Std. Err.	t	P> t
class				
2	1.273362	1.279048	1.00	0.336
3	-2.958034	1.866086	-1.59	0.135
4	-6.352585	.8561826	-7.42	0.000
I.				
cigarettes	<mark>1844306</mark>	.0440418	-4.19	0.001
l.				
class#c.cigarettes				
2	2134357	.0638309	-3.34	0.005
3	0996347	.1210344	-0.82	0.424
4	0858862	.0536556	-1.60	0.132
_cons	33.13684	.797873	41.53	0.000

Within-individuals models (FE and FD)

Panel: each individual separately

cigarettes

43

Panel: FE transformation

44

Panel: FD transformation

Calculation of the withinregression coefficients

FE: OLS of individually de-meaned data

De-meaning and regression:

bysort id:	center b	mi ciga	rettes				
(result in	c_bmi, c	_cigare	ttes)				
. reg c_bmi c_c	igarettes i.t	cime, noci	// de-tren	ded			
Source	SS	df	MS	Number of obs	=	60	
+-				F(4, 55)	=	89.42	
Model	70.4049271	4	17.6012318	Prob > F	=	0.0000	
Residual	10.8258727	55	.19683405	R-squared	=	0.8667	
+-				Adj R-squared	=	0.8570	
Total	81.2307998	59	1.37679322	Root MSE	=	.44366	
c_bmi	Coef.	Std. Err	. t	P> t			
c_cigarettes	<mark>2569932</mark>	.0423276	-6.07	0.000			
 time							
5	.3979958	.1699408	2.34	0.023			
10	. 3220262	.2611874	1.23	0.223			
15	.5693978	.3942911	1.44	0.154			
_cons	3223549	.1918698	-1.68	0.099			,

FD: OLS of individually 1st differenced data

De-meaning and regression:

<pre>gen dcigarettes = cigarettes - l.cigarettes gen dbmi = bmi - l.bmi . reg dbmi dcigarettes, noci</pre>							
Source	SS	df	MS	Number of obs	=	45	
+-				- F(1, 43)	=	17.80	
Model	6.07890287	1	6.07890287	/ Prob > F	=	0.0001	
Residual	14.6872578	43	.341564135	6 R-squared	=	0.2927	
+-				- Adj R-squared	=	0.2763	
Total	20.7661607	44	.471958198	B Root MSE	=	.58443	
dbmi	Coef.	Std. Err.	t	P> t			
dcigarettes	2042172	.0484079	-4.22	0.000			
_cons	.3507921	.161779	2.17	0.036			

FD is NOT invariant of measurement time !

With this data:

10

4

We can produce these fitted lines:

-2

23

Graphical interpretation of within models

all α_i (including class!) eliminated

De-meaning identifies causal effect under weaker assumptions: $Cov(x,e) \neq 0$ for time-invariant parts α_i of e

Problems FE-Models

- Often (too) little within-variance -> check variance decomposition within/between/total!
- Time-constant variables (e.g., sex) cannot be modelled
 -> separate modeling or interaction
- Co-varying (confounding) changes must be controlled
- Only Average Treatment (effect of the)Treated, not ATE
- (Selective) attrition and panel conditioning

Poll 4: FE vs. OLS estimators

Which statements are correct? (all that apply)

- 1. FE is too low because it ignores between variance
- 2. OLS is too high because it includes between variance
- 3. OLS is better for time-constant independent variables

Excursus: Random effects regression (multilevel)

RE: weighted mean between FE and pooled OLS

RE - Regression is equivalent to pooled OLS after the Transformation :

$$(\mathbf{y}_{it} - \Theta \ \overline{\mathbf{y}}_{i}) = \beta_0 (1 - \Theta) + \beta_1 (\mathbf{x}_{it} - \Theta \ \overline{\mathbf{x}}_{i}) + (\mathbf{u}_i (1 - \Theta) + (\varepsilon_{it} - \Theta \ \overline{\varepsilon}_{i}))$$

with
$$\Theta = 1 - \sqrt{\frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2 + T\sigma_{u}^2}}, \quad 0 < \Theta < 1$$

54

RE example: BMI regressed on cigarettes and class

Weight class (lines)

 \rightarrow high if indiv. OLS imprecise (black person)

RE "borrows strength" from OLS

Weight individual OLS (dots):

 \rightarrow high if indiv. OLS precise (blue person)₅₅

Within estimators: Summary

Summary: within estimators

- Fixed effects (**FE**) transformation: $\tilde{y}_{it} = y_{it} \bar{y}_i$ ("de-meaning")
 - Captures individual trend
- First difference (**FD**) estimator: $\Delta y_{it} = y_{it} y_{i,t-1}$
 - Captures only short-term change, different from FE estimator if n>2
 - To model immediate effects
 - Measurement time is important
- Both eliminate the individual effect α_i

-> control for heterogeneity, time-invariant characteristics cannot bias coefficients (omitted variables bias)

- Simple to compute (OLS)
- FE are preferred in social sciences

FE example with real data: Events and life satisfaction

Clark, A. E., E. Diener, Y. Georgellis, and R. E. Lucas. 2008. 'Lags and leads in life satisfaction: A test of the baseline hypothesis'. *The Economic Journal* 118 (529): F222–43.

4. Comparison of models

Which model?

Research question: descriptive or causal

a.) descriptive: Are individuals with a partner more satisfied than those without a partner? (-> cross-sectional data)

b.) causal: How does a change in partnership status affect life satisfaction? (-> panel data)

Economist perspective:

- -> Select the model which captures the causal effect best
- -> Hausman test (**FE is the default**)

FE or RE ? The Hausman test

Hausman compares estimation coefficients $\hat{\beta}_{FE}$ and $\hat{\beta}_{RE}$

if $\hat{\beta}_{FE} = \hat{\beta}_{RE}$ -> use $\hat{\beta}_{RE}$, because $\hat{\beta}_{RE}$ is more efficient $\left(var(\hat{\beta}_{FE}) > var(\hat{\beta}_{RE}) \right)$

if $\hat{\beta}_{FE} \neq \hat{\beta}_{RE}$ -> use $\hat{\beta}_{FE}$, because $\hat{\beta}_{FE}$ unbiased but $\hat{\beta}_{RE}$ not

Note:

- Very often $\hat{\beta}_{FE} \neq \hat{\beta}_{RE}$ (sample size high enough even with small differences)

- Test is only formal and does *not* replace research question driven check for model appropriateness

FE versus RE models

Fixed effects models

- OLS-estimated
- Only variance within-individuals used
- Controls for unobserved heterogeneity (consistent also if Cov(α_i,x)≠0)
- Effects of time-invariant characteristics cannot be estimated (e.g., gender, cohort)

Random effect models

- Maximum likelihood estimated
- Uses both within- and betweenindividuals variance
- Assumes exogeneity: Cov(α_i,x)=0 (no effects from unobserved variables allowed)
- Effects from time-invariant and timevarying covariates

If research interest is **longitudinal or causal**

If research interest is on variance on different levels

The Hybrid (aka Mundlak) model

- FE-coefficients can be estimated within the multilevel (RE) framework
- The same variable can be included in both levels:

$$y_{it} = b_1 \bar{x}_i + b_2 (x_{it} - \bar{x}_i) + \alpha_i + e_{it}$$

• De-meaned coefficients equivalent to FE

Life satisfaction	Within		RE		Hybrid	
Partner	.282***	(.013)	.362***	(.012)	.282***	(.013)
Age	055***	(.003)	046***	(.002)	055***	(.003)
Age squared	.000***	(.000)	.000***	(.000)	.000***	(.000)
Partner: mean					.605***	(.024)
Age: mean					065***	(.002)
Age squared: mean					.001***	(.000)
Constant	9.510***	(.066)	8.869***	(.035)	8.958***	(.044)

5. FE example modeling happiness from a partner using the Swiss Household Panel

Research Question

Does living with the partner affect happiness in Switzerland?

We use data from the SHP 2000-2021. Happiness: In general, how satisfied are you with your life if 0 means "not at all satisfied" and 10 means "completely satisfied"?

- age range: 18-103
- N = 175,007 person-years (observations), 29,004 individuals

Mean values: people/times with and without partner

Challenge

- adequate model (OLS, FE, (FD), RE)
- correct statistical confounding (covariate selection):

No undercontrol bias: we include as controls:

- 1st wave (technical confounder: too high report of happiness)
- survey year: period and fieldwork effects (techn./exog. conf.)
- agecat, 18-25, 26-35,, 66-75, 76+ (exogenous confounder)

No overcontrol bias. We do *not* include:

- health: part of partnership that affects happiness through health (mediator) would be lost.
- income/wealth (same reason)

Raw values = OLS with interactions

"raw" relationship = Predicted values from OLS regression:

Adequate model / time-varying covariates

Panels 2 and 3: Care with agecat X partner: We want the effect from partner, not from aging! -> keep age constant within individuals (ageSTART). -> only effect from partner at different ages estimable.

Panels 1 and 2: Happiness drops with age (Kratz & Brüderl 2021) -> FE Problem in OLS:

- older age groups increasingly positively selected (health, satisfaction)
- older age cohorts happier (FE ok)
- omitted variables: e.g., migrants (unhappier, rather partnered) (FE ok)

Overcontrol: health

The part of partnership that affects happiness through health (mediator) is lost

Coefficient plot: OLS, RE, FE

6. Test assumptions of FE models
1.Treatment selection effect (Vaisey & Miles, 2017, Fig.2) Panel A

Panel A: classic FE case: y_t are functions of an unobserved time-constant fixed effect (u), selection into the treatment (x) is based on u, and y_3 is affected by both u and x

Panel B makes the treatment x a function of the previous wave's outcome variable. Controlling for u alone does not prevent the effect of y_2 on y_3 through x from "leaking through" into the estimate of the effect of x.

1. Test Treatment selection effect

The test checks, if x_t can be predicted by y_{t-1} net of a proxy for the (time-constant) fixed effect?

We proxy the fixed effect by the sum $y_{t-1} + y_{t-2}$ So we regress partner_t on happy_{t-1} and on (happy_{t-1} + happy_{t-2})

partner	Coef.	Std. Err.	t	P> t	
satlife L1.	.0013211	.0013265	1.00	0.319	insignificant
l12satlife _cons	.0326805 .1623415	.0015419 .0235284	21.19 6.90	0.000 0.000	

-> no evidence of treatment selection

2. Parallel trajectories (Vaisey & Miles, 2017, Fig.5)

If treated and untreated have different time trends, FE coefficients will be biased, because **FE** fails to account for time trends that differ between willbe-treated and won't-betreated groups prior to the treatment. 75

1. Test Treatment selection effect

We use a model that allows different treatment groups to have different time slopes. In the modified hybrid model:

$$y_{it} = b_1 \bar{x}_i + b_2 (x_{it} - \bar{x}_i) + c t + d(t \bar{x}_i) + \alpha_i + e_{it}$$

we allow respondents with different average levels of x to have different time trajectories (re model)

satlife	Coef.	Std. Err.	Z	P> z
c_partner m_partner sy	.2571382 9.925261 0037778	.0192564 3.879543 .0016657	13.35 2.56 -2.27	0.000 0.011 0.023
c.sy#c.m_partner	0047139	.0019269	-2.45	0.014

Interaction term indicates small endogenous selection.

Note: b_2 is in FE models not biased by potential differences in time slopes for those with different mean values of x.

Literature

Causality and counterfactual:

Morgan, S. L. & Winship, C. (2014). Counterfactuals and causal inference. Cambridge.

Fixed effects mechanism:

Andreß, H., Golsch, K., & Schmidt, A. (2013). Applied panel data analysis for economic and social surveys. Springer Science & Business Media.

Brüderl, J. & Ludwig, V. (2015). Fixed-effects panel regression. In: SAGE Handbook of regression analysis and causal inference (eds: Best and Wolf), 327-357.

Ludwig, V., & Brüderl, J. (2021). What you need to know when estimating impact functions with panel data for demographic research. *Comparative Population Studies*, *46*.

Kratz, F., & Brüderl, J. (2021). The Age Trajectory of Happiness. Ludwig-Maximilian-University, Munich.

Growth curves using FE models:

Brüderl, J, Kratz, F., & Bauer, G. (2019). Life course research with panel data: An analysis of the reproduction of social inequality. Advances in Life Course Research 41.

Fixed versus random effects models:

Bell, A., & Jones, K. (2015). Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

Short (2-3 wave) panels: Vaisey, S., & Miles, A. (2017). What you can—and can't—do with three-wave panel data. Sociological Methods & Research, 46(1), 44-67.