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LIVES Center and Institute of Demographics and Socioeconomics,
Faculty of Social Sciences, University of Geneva

Abstract

In this article, we propose a methodology for the validation of sequence analysis
typologies based on bootstraps. The method works by comparing the quality of the
obtained clustering with the quality obtained by clustering similar but unstructured
data. Several models are proposed in order to test the different structuring aspects of
the sequences that are important in life course research, namely sequencing, timing and
duration. The framework is extended to multichannel sequence analysis by looking at
the structure stemming from the association between the channels.

1 Introduction

Since its introduction in the social sciences by |Abbott and Forrest| (1986), sequence
analysis (SA) has become an increasingly popular tool to study trajectories. It
has recurrently been identified as one of the most promising methods for life
course research (e.g. [Shanahan, [2000; |Mayer|, 2009; Liefbroer and Toulemon) 2010;
Brzinsky-Fay, [2014)). The main strength of SA, often called optimal matching, is
to provide a holistic view of processes described as a sequence, i.e. a succession of
states (Abbott, |1995]).

Most of the time, the method is used in conjunction with cluster analysis in
order to create a typology of the trajectories. The aim is to identify recurrent
patterns in the sequences or, in other words, typical successions of states through
which the trajectories run. The individual sequences are distinguished from one
another by a multitude of small differences. The construction of a typology of
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sequences aims to ignore these small differences so as to identify types of trajectories.
Ideally, these types should be homogeneous and distinct from one another.

The success of the SA methodological framework can be explained by several
typical uses and interpretations of SA typologies. Some authors such as |Levy
et al| (2006 engage in “structural” interpretations of the typology resulting from
SA, following an institutional approach (Bernardi et al., 2019)). They assume
typology reveals regularities that results from the most important socio-structural
forces. In a way, the typology is interpreted as an indicator of the key social
constraints. Legal, economic or social constraints might coerce trajectories into few
different possible types, and hinder some theoretically possible trajectories that are
in fact almost never observed. For instance, the absence of childcare service and
gender norms might bend the professional trajectories of women to “at home” or
“part-time employment” patterns. Temporal dependencies between different stages
of the trajectories might also result in regularities in observed trajectories. Such
patterns might be frequent because some steps are mandatory to attain some given
professional position for instance.

As noted by |Abbott and Hrycak]| (1990)), typical patterns might be widely known
in the population of interest. Actors might even use these typical patterns as a
model to build their own trajectories, because they anticipate their own future.
This interpretation is close to the image of the “trodden trail” developed in the life-
course theory (Shanahan, [2000; [Brickner and Mayer, [2005). Some paths become
well known and are followed by some individuals because they were previously
followed by many others, resulting in types of trajectories being more and more
followed.

Finally, other authors make a more descriptive use of SA typologies. They
mainly see the types as a convenient way to describe, measure or operationalize
the whole diversity of observed trajectories. This typically allows including the
complex concept of trajectories into further analysis. For instance, we might be
interested to measure how previous trajectories influence health at old age. In this
case, SA allows reducing the complexity of trajectories into a few types and use
the simplification in subsequent analysis. This is generally justified by considering
that the description of the social world requires a certain degree of simplification.

One of the key criticisms against sequence analysis relates to the lack of a
validation procedure for the resulting typology. As raised by |Levine (2000) already
(but also|Abbott and Tsay, 2000; |Abbott), 2000; Warren et al., 2015, to name a few),
cluster analysis always produces a typology, which might be relevant... or notﬂ

!This criticism was recently brought to light again by Warren et al.| (2015). Using simulations,
they showed that inference about the number of groups or the exact cluster membership (which
sequences belong to which cluster) should be done with caution. Even if their results should be
extended to consider sequences made of more than two states (i.e. the typical SA case), their
study highlights the need for proper validation tools to adapt the interpretation of the results.



The cluster analysis procedure works by reducing the information into a few types
of sequences. However, this reduction might be abusive or we might have failed
to identify distinct types of trajectories. However, each of the above-mentioned
uses and interpretations make the implicit assumptions that the typology reveals
a significant structure of the observed trajectories. The “institutional” approach
interprets the typology as the structure of the data. The “descriptive” approach
implicitly assumes that the trajectories can be fully described by the typology
as soon as it is used in subsequent analysis, which is most often the case. Both
interpretations therefore need a proper validation procedure that would allow us to
assess the relevance of the obtained typology.

Cluster quality indices (CQI) are the most commonly used tool to validate
a typology in SA (see Studer, 2013, for a review). Their aim is to measure the
quality of the clustering from a statistical point of view, generally by combining
indicators of the within-cluster homogeneity and the between-cluster separation.
These indices can be used to compare the results of different clustering algorithms,
and to guide the choice of the number of groups. However, they have three main
weaknesses.

First, they cannot be computed for the one-cluster solution (i.e. no clustering).
It is therefore impossible to check whether it could have been better to avoid
any clustering. CQI therefore give no indications on the statistical relevance of a
typology.

Second, these indices lack clear interpretation thresholds. Their values are
only indicative and meaningful when compared to another typology built using
the same dataset and distance matrix. It is therefore impossible to know whether
the identified structure is strong or weak, except for the extreme cases which are
theoretically defined.

Finally, their behavior when the number of types varies is unknown. For
instance, Milligan and Cooper| (1985)) showed that the HC index features among
the best index to recover the true underlying number of groups, but that it tends to
show a slight decrease when the number of groups rises. Therefore, small variations
of this index should not be interpreted. But what are small variations? The same
applies to the average silhouette width which tends to favor the two groups’ solution
and to disadvantage higher numbers of groups. Without well-defined interpretation
thresholds, the results cannot be validated, and we cannot be confident that a
significant structure was found in the data.

The lack of a statistical procedure for validation can probably be explained
by the fact that the usual statistical machinery cannot be used for that purpose.
Indeed, in the cluster analysis phase, the groups are built to be as different as
possible. Even in the absence of structure in the data, the groups would therefore
be significantly different from one another compared to the usual independence case.



In other words, we lack a well-defined “independence” case to test the significance
of the typology as we do in most statistical tests.

Second, SA builds a typology by comparing sequences, without assuming any
model on how the data were generated. This is a strength, because it might catch
patterns resulting from complex constraints that would have been caught only by
very complex model. At the same time, it is a weakness. Without a model, we
cannot check whether this model can be safely generalized to the whole population,
as generally done in statistical tests. In other words, we also lack a “full” model
that would allow us to judge the quality of the clustering.

In this paper, we propose a new validation procedure for SA. This procedure is
based on the bootstrap methods for cluster homogeneity, a framework for cluster
validation recently introduced in the cluster analysis literature (e.g. |Gordon, [1999;
Hennig et al., 2015). It provides a null model to sequence analysis allowing
overcoming the limitation identified above. As pointed out by Hennig (2015), this
framework requires to be adapted to the field of application in order to provide
meaningful results. We discuss here several adaptations of it for SA and the study
of the life course. We conclude by highlighting the added value of each of these
adaptations and show how it can be used and interpreted in upcoming research
making use of SA.

2 Sample Issue

Before presenting the method, we introduce here a sample issue that will serve
as an illustration throughout this article. We are interested in the construction
of professional and family trajectories in Switzerland following the work of |Levy
et al. (2006). We rely on data from the biographical retrospective survey conducted
by the Swiss Household Pane]El in 2002. We focus on the demographically and
professionally dense period between 20 and 45 years old. We retain all cases without
missing data, that is 1237 trajectories. The occupational trajectory is measured
yearly and allows distinguishing between the following states: full-time work, part-
time work, non-working and education. Figure [l| presents the chronogram of these
trajectories.

From the previous work of |Levy et al| (2006), we know that, while men’s
trajectories are relatively homogeneous and exhibit three main phases, namely
“education,” “full-time work” and “retirement,” those of women are much more
varied. Their average curve of working rates has a camel shape with a decrease
in working rates when children are young and a recovery thereafter. This average
curve results, however, from very distinct types of trajectories. Some women stop

Zhttp://www.swisspanel.ch
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Figure 1: Chronogram of professional trajectories.

working or reduce their working rates while others return to work afterward. In
addition, some women go back and forth between work and at home activity. We
can therefore expect a strong clustering structure in the professional trajectory,
distinguishing either two types, one for men and one for women, or more if the
different types of women trajectories should be characterized.

The co-residence trajectories are presented in Figure [2| and are coded using
seven states, living with: two biological parents, one parent, alone, a partner, a
partner and at least one child, being a single parent, and other situations. We
anticipate less structured co-residence trajectories, but still centered around a few
types. Previous studies have shown that family trajectories of these cohorts were
highly standardized Levy et al| (2006) regarding the timing and the sequencing of
the states in the trajectories.
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Figure 2: Chronogram of co-residence trajectories.

Following |Gauthier et al|(2010), we are also interested to build a joint typology
of the two sets of trajectories. The relative absence of childcare service in Switzerland
leads us to expect a strongly intertwined professional and family trajectories of
women. On the contrary, the strong male-breadwinner norms in Switzerland should
result in a relatively low joint structure in the two sets of trajectories for men.

For all subsequent analyses, we use the Ward clustering algorithm and the




optimal matching distance with constant costs. This distance measure is known to
take duration and sequencing into account while measuring dissimilarities between
sequences (Studer and Ritschard, 2016). However, the proposed procedure might be
used with any clustering algorithm and distance measure. After having presented
our sample issues, we now turn to the presentation of the proposed methodology.

3 Bootstrap Test for Cluster Homogeneity

Recently, [Hennig and Liao| (2010) and [Hennig and Lin| (2015 proposed a new
method that aims to provide interpretation thresholds for cluster quality indices
(CQI). Building on the work of |Gordon| (1999)), their generic framework is based on
bootstraps to compare the quality of the obtained typology to the one we would
obtain by clustering similar but unstructured data. In other words, we aim to
measure to which extent the quality of the obtained typology surpass the one
we would obtain for data with no clustering structure. If it is the case, we can
then be confident that our typology reveals a “true” clustering structure. This
comparison also provides a baseline value for interpreting the values of the CQI
and a description of their behavior with varying number of groups.

As noted by [Hennig| (2015)), this generic framework needs to be adapted to each
field of study in order to be based on relevant criteria. This adaptation requirement
is therefore a strength that guarantees the meaningfulness of the results for a
specific field. In this paper, we propose several adaptations of this framework to
sequence analysis. Each of these adaptations provides a distinct information on
the quality of the obtained clustering.

3.1 The Generic Framework

As mentioned above, the general idea is to compare the quality of the obtained
clustering with the quality obtained by clustering similar but unstructured data.
If the quality of our clustering fall in the range of what we usually observe for
unstructured data, we can conclude that the structure found with our clustering is
weak. On the contrary, if our clustering quality is much higher, we can be confident
and assess the relevance of our typology.

We rely on bootstrapping to estimate the CQI values of unstructured data.
More specifically, the bootstrap procedure works by repeating n times the following
operations:

e Generate similar but unstructured data using a “null” model.
e Cluster the generated data.
e Compute the value of the CQI of interest.



The result of this bootstrap procedure is n CQI values that we obtained by
clustering unstructured data. We can then compare these n values to the one of
our clustering.

In the usual statistical reasoning, we can think of these procedures as a way to
estimate the null distribution of the CQI, where the null model refers to the absence
of any clustering structure in the data. This strategy allows to overcome the lack of
an independence model in cluster analysis that we identified above. Following the
usual statistical reasoning, we use this information to derive a test-like framework
to assess the clustering structure of the obtained typology.

This framework is very generic and requires to specify two important points.
First, we need a null model to generate similar but unstructured data. We therefore
need to define what similar and unstructured mean in the context of sequence
analysis. As noted by [Hennig (2015]), there is no universal definition of the absence
of structure, this should be defined according to the aims of the analysis and it
depends on the use and interpretation of the results. Second, we need to define
how we measure the quality of a clustering. We do so by choosing a CQI. However,
different CQI exists, each emphasizing a different aspect of clustering structure.

The need to define these two points lead to the same question: what is structure?
This is a sociological one, not a statistical one. In this paper, we propose to answer
it based on the life-course paradigm.

3.2 Choosing a Cluster Quality Index

Several CQI are available. Each of them measures a slightly different aspect of
the statistical quality of a given typology (Hennig), 2017). In order to make a
choice among them, we need to decide which aspects of the structure we are mostly
interested in.

First, we need to clarify the kind of latent structure we are interested in. Let
us take the simple sociological example of Hennig and Liao| (2010) to illustrate this
aspect. Suppose we would like to create a typology of economic resource using
income (x-axis) and wealth (y-axis) represented in Figure [3|

In this example, we might identify three groups that are represented using
different colors and symbols. While cluster B and C seem to be well clustered, we
can discuss the clustering of cluster A. If we are interested in a latent underlying
structure measuring a relationship between income and wealth, cluster A is well
defined. However, if we are interested in different average combination of income
and wealth, this cluster is badly defined, as it regroups very different social realities.
In the latter case, the four groups solution would be better.

Transposing this discussion to SA, we should decide whether we are mostly
interested in difference in the average trajectory, or in the transition rates along
these trajectories. The aim of SA is to identify frequently observed trajectories.
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Figure 3: Scatterplot of the distribution of income on the x-axis, and wealth on the
y-axis, for the three and four clusters solutions. Colors and symbols distinguish
the groups.

In this sense, we are mostly interested in difference in location or average. On
the contrary, latent Markov models would be more suited to capture differences in
transition rates (see Piccarreta and Studer] 2019, for a review)ﬂ

When building a typology focusing on different locations between clusters, two
statistical aspects could be of interest: between-cluster separation and within-
cluster homogeneity. Figure [4] proposes a schematic graphical representation of
them. Between-cluster separation refers to the extent to which types are different
from one another. Within-cluster homogeneity refers to the homogeneity of each
type, or in other words, the extent to which each type regroups a single trajectory.
Most of the time, these two aspects are strongly interrelated: a well-separated
clustering solution is often homogeneous as well.

Separation is an important aspect when giving a structural interpretation of the
resulting typology. In order to look for underlying structural reasons for observing
different types of trajectories, we need to observe types that are different enough,
or in other words, well separated. Separation is also important when using the
typology in subsequent analysis such as multinomial regression, even in a descriptive
perspective. Having many sequences in between two types might create or hinder
statistical relationships with other covariates of interest in this case (see [Studer],
2013, for a detailed discussion).

On the other side, a strong structural interpretation of the typology also requires
a high within-cluster homogeneity. If strong social constraints are at work, we

3The reasoning presented here probably partly explain the results for sequences analysis
presented in (Warren et all 2015)). In their simulation study, latent classes were defined by
difference in transition rates, not observed sequences.
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Figure 4: Examples of different levels of separation and homogeneity.

should expect homogeneous sequences within each type. The same applies for the
“trodden trail” interpretation (Shanahan, 2000). Homogeneity is also important
when the typology is used in subsequent analysis, because in this case, all sequences
grouped into the same type will be assumed to be equal (see , for a
detailed discussion) [T

To conclude, we are generally interested in both aspects. In this paper, we
will therefore focus on the average silhouette width (ASW) which combines both
aspects in a single index (Kaufman and Rousseeuw, [1990). The ASW measures the
quality of the clustering by relating for each sequence the distances to the center
of its own cluster (capturing homogeneity) to the distance to the closest other
type (capturing separation). Although the authors provided some interpretation
thresholds of the ASW values, these values are only indicative and their validity
for sequence analysis is unknown. Furthermore, in many cases, the ASW index
tends to favor the two group solutions (Hennig and Liaoj, 2010).

There are other indices that might be of interest in some applications. The
Pseudo-R? aims to measure information reduction, by computing the share of the
variability of the trajectories explained by the clustering (Studer et al. 2011). This
index is usually avoided because of it lacks interpretation thresholds, even if it has
a clear interpretation. Since the procedure developed here provides such threshold
values, the index can be used. The same applies to the HC index which computes
the gap between the best theoretically possible clustering and the obtained one
(Hubert and Levin, [1976). It was shown to feature among the best indices to retrieve

41f we use a categorical variable to represent the typology, then all sequences in the same type
have the same value on this variable.



the correct number of groups, even if small variations should not be interpreted
(Milligan and Cooper} [1985|). The proposed methodology provides a way to identify
ignorable variations.

As noted by Hennig (2017), many CQI are available, each index measuring a
slightly different aspects of cluster quality. It is often useful to combine several of
them in order to describe more precisely the kind of structure found in the data.
However, in this paper, we focus on the ASW to keep the presentation as simple
as possible and to present the generic methodology.

3.3 Null Model Requirements

Aside from the choice of a CQI, we also need to define a null model. As a recall, the
aim of this model is to provide typical value of the CQI when the data should not
be clustered. We do so by generating data with the null model before clustering
them and computing the associated CQI.

The null model should generate similar, but unstructured data (Hennig and Liao),
2010). By similar, we mean that the model should reproduce any non-informative
structure of the data. In most applications, there is some structured information
that we don’t want to interpret as a clustering structure. This information should
therefore be reproduced by the model.

However, we should also generate unstructured data. The data produced by
the null model shouldn’t convey any information that we consider as a clustering
structure.

These two aspects require us to define the kind of structure that we are looking
for. This is a sociological question not a statistical one. We propose here to answer
it based on the life-course paradigm in order to provide a generic framework for
sequence analysis. This requirement has been one of the key critics against this
framework (see the comments on [Hennig and Liao, [2010). On the contrary, we see
it as one of its main strengths as it guarantees the interpretability and usefulness
of the results in specific applications (Hennig), 2015).

We focus here our discussion on the single-channel case. The extension of the
framework to the multichannel case is postponed to the next section.

3.3.1 Similar Data

Our null model should reproduce any aspect of the data structure we are not
particularly interested in. Generally speaking, there are three of such aspects in
most applications of sequence analysis.

First, some transitions might be impossible. This is generally known, and we
are usually not interested to uncover this information with a typology. For instance,
when studying civil status trajectories, we know that there will be no transition
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between divorced and single. These impossible transitions results in regularities in
the sequences, that should not be identified as “structure” as it is non-informative.
It should therefore be reproduced by our null model.

Second, trajectories are generally organized by spells (Elzinga and Studer} [2015)).
When studying professional or family trajectories, we typically observe sequences
made of a few different spells, some of them lasting for several times unit. For
instance, the sequence “Education/4-Full-time/10-Inactive/6” is made of three
spells. This is a very strong regularity. However, we are not particularly interested
in it, because we already know it. Therefore, our null model should also generate
data organized by spells.

Finally, we are often not interested in the fact that some states or spells are
more common than others. Indeed, even if there was only one type of sequences in
the data and therefore no clustering structure, we might expect different frequencies
for each spell or state. For this reason, we don’t consider spell or state frequency as
a structuring aspect of the sequences. Here again, this means that our null models
should reproduce, at least to some extent, the state or spell distributions of the
data.

We identified three structuring aspects of sequence data that should be re-
produced by our null model when using single-channel SA. These are impossible
transitions, spell organization of the data and state/spell frequency. We now turn
to the discussion of the structuring aspect of sequences data that we would like to
capture.

3.3.2 Unstructured Data

Generally speaking, there are two broad cases for unstructured data, also called
homogeneous clustering, that should lead us to avoid clustering our data. These
cases are schematically represented in Figure f] First, there might be only one type
of trajectory in the data. As such, any clustering would create unneeded distinctions
and should be avoided. This case is quite uncommon in social sciences, where
individuals tend to follow diverse trajectories. Furthermore, many visualization
tools are available in Sequence Analysis that could be used to identify it.

Second, the trajectories might be homogeneously distributed in the sequence
spaces as represented on the right-hand side of Figure[5] In this case, several reasons
should lead us to avoid clustering the data. First, the clusters are not homogeneous
nor well separated, and, as discussed in section [3.2] this might raise concerns in
most uses and interpretation of SA typology. Second, the type assigned to a given
observation is dubious. In Figure o, blue, red or green clustering are equally well
defined, but each of these regrouping might have a different interpretation. The
interpretation of the type of trajectory for the green point is therefore dubious as it
depends on the choice between blue, red or green clustering. The same reasoning
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Single Type Homogeneous Distribution

Figure 5: Schematic representation of homogeneous clustering cases.

could be done for any observations. Finally, in most clustering algorithms, the
choice among these possibilities is not robust in this case. Partitioning around
medoids (PAM) (Kaufman and Rousseeuw, 1990) relies on the overall layout and
therefore ultimately on the borders of the sample. The bottom-up approach of
many hierarchical clustering such as Ward is influenced by small variation on
pairwise distances. In all cases, the results might depend on sampling, because
the cluster is not defined according to a strong regularity of the type itself. In
this article, we focus our null model on homogeneously distributed observation for
two reasons. First, this case is trickier to identify using standard descriptive and
visualization tools. Second, it is quite common.

We therefore want our null model to generate homogeneous data, but on which
aspects? We base here our reasoning on the life-course framework. Extending
the work of [Settersten and Mayer| (1997) and Billari et al.| (2000)), |[Studer and
Ritschard| (2016)) identify three regularities of interest when using sequence analysis
in life-course research.

The sequencing of the states shows the path taken by individuals. It is often
thought to be of key importance, as many social norms or structural constraints
relate to the ordering of the stages in a trajectory. For instance, having a child before
or after marriage is not interpreted in the same way in many countries (Hogan,
1978)). The sequencing also captures the dynamic of the trajectory. Observing
unemployment before or after employment reveals opposite professional integration
dynamics, even if the same states are observed. A recurrent ordering of the stage
might also result from mandatory steps that are required to access to some specific
positions.

A strong sequencing structure is found in the data, when we only observe a few,
but recurrent, orderings of the states. In this case, a typology is an efficient way
to summarize the main orderings. The homogeneous clustering is therefore found

12



when all paths are likely, as a sequence typology will probably regroup different
ordering in the same types, and many sequences might lie in between types of
sequences.

The timing of the states or transitions, i.e. when an individual is in each state or
experience a transition, is also an important regularity in trajectories. Many studies
have emphasized the pregnant role of age norms over the life-course (Widmer et al.|
2003). Going even further, Lesnard (2010)) claims that the social interpretation of
a state depends on when it is observed. For instance, being unemployed at 25 or
60 years old has different causes and implications that should be studied on their
own. A timing structure is found whenever some states or transition are specific to
some age range.

Finally, the duration, i.e. the time spent in each state or the duration of spells,
is also of interest in many applications. The pattern of time spent in unemployment
is a key indicator in many studies of professional integration. Spell duration also
capture the relative timing, sometimes called the spacing (Settersten and Mayer],
1997)), between the main transitions, such as the time spent between marriage and
first child. A duration structure is found when a spell of a given type typically last
for a specific duration; for instance, when individuals tend to stay either for a long
or short time in a given type of spell, such as living alone.

These three aspects are strongly related one to the others. For instance, the
first and last state of a sequence partially defines the timing and the sequencing of
a trajectory. Very long time spent in a state usually implies a simpler sequencing.
It is therefore impossible to isolate each aspect from the others. However, in many
applications, understanding specific differences stemming from each aspect is of
interest as it might lead to more precise interpretation of the results (Studer and
Ritschard}, 2016]).

Our aim is to capture the structure of the data arising in these three aspects.
Our null model should therefore not reproduce it. Going even further, it should
generate data showing a timing, sequencing or duration as unstructured as possible.
However, it might also be of interest to measure to which extent the data are
structured according to each of these aspects taken separately.

3.4 Conclusion

The generic framework aims to provide baseline interpretation of the CQI by
computing the value we would obtain by clustering similar, but unstructured data.
We can then have a new insight on the structure found by our own typology. As
we have seen, this generic framework implies choosing a relevant CQI and a null
model to generate the data. In this section, we decided to focus on the ASW to
measure the quality of the clustering as separation and homogeneity are generally
of interest. However, the procedure works for other indices as well.

13



We presented several properties that should be fulfilled by the null model. In
life course research, we are interested to capture the structure stemming from
sequencing, timing and duration, either globally or in the specific structure in
each aspect.At the same time, we would like to avoid taking into account the spell
organization of sequences, the state or spell frequencies, nor the non-occurrence of
impossible transitions. Finally, the null model depends on the aim of the analysis.
In the next section, we present several null models, each following a different goal
and providing a different information.

4 Null Models for Sequence Analysis

We present here several null models for single-channel sequence analysis. We start
by discussing three spell-based null models, which aims to reproduce the spell
organization of sequences, before presenting a state independence model, generating
sequence position by position, and a transition-rate based model. All these models
are complementary as each of them provides a specific information on the kind of
structure revealed (or not) by the created typology.

4.1 Spell-Based Null Models

Sequences in the social sciences are generally organized by spells and can be
represented as such (Elzinga and Studer, [2015). Let us take an example. The
professional trajectory of a woman working full time (F) for 5 years before working
part-time (P) for 20 years is usually represented as a sequence of 25 positions such
as

FF..FPP..P. P (1)

5 20

However, it can also be represented as a “spell sequence” in the form (F, 5)(P, 20).
In the latter case, the sequence is described by a state vector = (F, P) and
an attached duration vector t = (5,20). Such representation emphasizes two
dimensions of the sequences: the sequencing of the state (the state vector) and
the time spent in each state (the duration vector). However, contrary to the usual
representation of sequences, the timing dimension is less pregnant.

Using this spell representation, we can create sequence data by generating two
vectors, one for the states and another for the durations, emphasizing sequencing
and duration. By doing so, we reproduce one of the strongest regularities in
sequences as used in the social sciences, its organization by spells.

We propose here three models, each bringing a specific information on the
quality of the obtained typology. While the “randomized sequencing” measures

14



the added value of the typology when compared to the situation where all paths
are likely, the “randomized duration” measures the captured structure in the data
that results from duration in the time spent in each state. Finally, the first model
presented, called “combined randomization”, combine the two dimensions.

4.1.1 Combined Randomization

Following the above-presented spell representation of sequences, we create two
vectors for each sequence. The state vector is made by sampling states among all
spells. In order to avoid impossible transitions, we use the following procedure. We
start by randomly sampling the first state. The next states are sampled among
possible states given the previous one. In all cases, the sampling is weighted by the
relative frequencies of state among all the overall possible spells. The sequencing is
therefore as random as possible, although spell frequency is kept.

The duration vector is created by sampling duration among all the observed
spells. Since we do not attach duration to the state, the durations are completely
random, even if the durations are those typically observed in the data. If our
sequences are generally made of long spells, this will be reproduced by the null
model. Finally, the sequences are cut to match the observed length in the data.

This null model therefore reproduces the spell structure of sequences, impossible
transition, spell state’s frequencies and durations, while randomizing sequencing,
duration and therefore timing as well. Figure [6] presents sequences generated using
this null model for the professional career data. While the chronogram shows
the sequences generated among all bootstraps, the index plot represents only one
bootstrap to avoid overplotting. As expected, timing, duration and sequencing are
not reproduced but the spell organization of sequences is. State frequency at each
time point is not reproduced because durations are not attached to states, but the
full-time (violet) state is still the most frequent.
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Figure 6: Chronogram and index plot of some sequences generated by the combined
randomization null model.

As a recall, the aim of such a procedure is to generate sequences, cluster them
and compute the CQI. These CQI values are then recorded and used to provide
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a baseline value for the CQI of our own clustering. Figure [7] provides a density
plot of this null distribution for clustering between 2 and 10 clusters using the
Ward clustering algorithm and optimal distance with constant costs. The clustering
algorithm and distance measures should be the same as in our original analysis.
The gray area under the curve represents a 90%-observed interval of these values.
The values obtained in the original data are represented using vertical red line
labeled with the number of groups.
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Figure 7: Distribution of the null values of the Average Silhouette Width for two
to ten clusters. The observed values of the ASW are represented with vertical red
bars.

The central 90% ASW values lie in the interval [0.25;0.47]. This roughly equals
the indicative inconclusive interval [0.25;0.5] proposed by Kaufman and Rousseeuw
(1990). However, this is application-specific. For the co-residence trajectory, the
bootstrapped 90%-interval is [0.17;0.34] which is below these standard values. This
illustrates that it is not possible to define generic CQI value thresholds and therefore
the need for the proposed framework.

By construction, any ASW value in the 90% interval [0.25;0.47] is comparable
to a situation where we don’t have any clustering structure. We can therefore
exclude the solutions in 9 or 10 groups. On the contrary, the ASW values obtained
with two to seven groups are well outside this range. We can therefore consider
that they reveal a true structure in the data. Going even further, Hennig and
Liao| (2010) propose a test-like interpretation of the results. We can reject the
assumption of our null model based on our data of homogeneous sequencing and
spell durations. Our typology therefore reveals a timing, duration or sequencing
structure if we consider two to seven groups.

We can also look at the null-CQI according to the number of groups. Following
the presentation proposed by Hennig and Lin! (2015)), the left-hand side of Figure
presents the ASW of our typology for a varying number of groups using a solid
black line. The 1000 bootstrapped CQI values are represented using individual gray
lines, while an 90% interval is computed and represented with a gray polygon. The
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right-and side of the figure represents the ASW values of our typology standardized
using the mean and standard deviation of the bootstrapped values for a given
number of groups. The aim of the standardization is to account for the changing
behavior of the CQI measure and clustering algorithm for different number of
clusters. A high standardized value can then be interpreted as a high relative gain
in the structure found for a given number of groups. According to this analysis,
the two or three groups solutions seems particularly well suited. If we want to
favor a bigger number of groups, the seven cluster solution seems to be a good
compromise.
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Figure 8: Combined Randomization: Observed and bootstrapped values of ASTW
and HC' values for a varying number of clusters. The right-hand-side plots show
the evolution of the standardized cluster quality indices.

Figure |8 also describes the evolution of CQI with a varying number of groups
when no clustering should be found in the data. In this case, we tend to observe
the highest ASW values with four groups corresponding to the number of states in
the alphabet.

This visualization is of special interest when using a CQI that cannot be directly
compared for different number of groups such as the Pseudo-R? or the Hubert’s C
index. As a recall, the HC' index, which should be minimized, featured among the
best one to select the correct number of groups according to Milligan and Cooper
(1985)), if small decreases are not taken into account. The proposed procedure
allows taking the expected decrease into account. The bootstrapped and observed
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value of the HC' index are presented in Figure [§] as well and would lead us to
consider the same number of groups.

4.1.2 Randomized Sequencing

The previously introduced null model is very generic as timing, duration and
sequencing are randomized. We propose here to focus on the sequencing only
and to measure the structure arising from the ordering of the state. We achieved
this by randomly generating state vector, using the same procedure as for the
above-presented “combined” approach. However, the durations are sampled among
the spell of a given state. Here again, the sequences are then cut to match the
observed length in the data. With such a strategy, the sequencing is completely
randomized but the time spent in each state is kept, i.e. remain as in the original
data. By comparing our clustering to the one obtained with randomized sequencing,
we therefore measure the difference relating to structured sequencing in the data.

Sequences Generated by the Randomized Sequencing Null Model
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Figure 9: Randomized Sequencing Simulation Results. The top plots present a
chronogram and index plot of sequences generated by the randomized sequencing
null model, while the bottom ones presents bootstrapped and observed ASW values
for a varying number of clusters.

Figure [J presents a chronogram of the sequences generated among all bootstraps

and an index plot of one of the generated datasets. The generated sequences are
likely, in the sense that they could have been observed. The frequencies of each
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state are reproduced, but the timing is not. As intended, we observe some unlikely
orderings such as sequences ending by an education spell.

Figure [J) also presents bootstrapped and observed ASW per number of clusters.
The observed ASW are higher than the null values with fewer than height groups,
meaning that our typology revealed a structure state’s ordering in the sequences.
The highest “relative” gain is found for the four and seven cluster solutions if we
look at the normalized ASW. Further interpretations can be drawn by comparing
these results with the combined randomization ones, which was favoring two or
three groups solutions. Since it is not the case for “randomized sequencing”, it
means that the structure identified for two or three groups mostly relate to the
time spent in each state.

4.1.3 Randomized Duration

Instead of focusing on sequencing, we can focus on duration. We generate sequences
by keeping the same observed sequencing but randomizing the associated duration
in each state. We do so by randomly drawing proportion of the trajectory spent
in each state using the uniform distribution. While the strategy allows measuring
the structure arising from duration in sequences made of more than one spell, the
sequences with only one spell are fully reproduced. Indeed, the proportion of the
time spent when there is only one spell is necessary 100%.

Figure [10] presents a chronogram and an index plot of some sequences generated
with this null model. The sequences could have been observed, but we observe
sequences with a long time spent in education, which is unlikely. As expected,
sequences in full-time employment are fully reproduced and will therefore be
counted as unstructured data.

As before, Figure presents the observed and bootstrapped ASW for our
typology. We observe quite a high value of the bootstrapped CQI for the solutions
in four clusters, i.e. one cluster for each possible state in the sequences. This is
probably because a clustering solution according to the dominant state in each
sequence tends to be quite a good one. According to this null model, there is no
added value of going beyond eight groups. Confirming our previous interpretation,
we observe a high relative gain (i.e. standardized value) for two and three clusters
solutions which should therefore be primarily linked to the time spent in each state.

4.2 Position-Based Null Models

Sequences can also be generated position by position using transition rates. Starting
from a given first state, the sequences are then built position by position by looking
at the previous state. The solution is appealing as it is possible to reproduce many

19



Sequences Generated by the Randomized Duration Null Model
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Figure 10: Randomized Duration Simulation Results. The top plots present a
chronogram and index plot of sequences generated by the randomized sequencing
null models, while the bottom ones presents bootstrapped and observed ASW
values for a varying number of clusters.

timing, sequencing and durations depending on the transition matrix. However,
two objections can be made.

First, as we already argued, we are not interested in difference in the relationships
between variables such as transition rates, but in difference in the average observed
sequence.

Second, a transition matrix is not necessarily a good candidate for a null model,
as it might reproduce many clustering structure in the data. This can be exemplified
using the following transition matrix.

And further suppose that all sequences start in the state A. With such transition
matrix, we would end up with two different observed sequences. A sequence with
the pattern AB ... B and the other one with AC'... A. As a result, the observed
sequences are strongly structured in two groups even if we used a single transition
matrix. We therefore need to choose a suitable transition matrix. |Hennig and Lin
(2015) use time-varying observed transition rates. However, with such a number of
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parameters, we are able to almost fully reproduce the original data, including its
potential clustering structure. We tested this option and, as in Hennig and Lin
(2015), the results are along this discussion, with observed CQI always lying in the
confidence interval of bootstrapped CQI Valuesﬂ

The question is therefore which transition matrix to use. We investigate here two
possibilities, each corresponding to a model-based approach. First we discuss the
state independence model, which is strongly related to the underlying assumptions
of Latent Class Analysis (Piccarreta and Studer, [2019)). Second, we discuss the use
of homogeneous transition rates, an assumption underlying some (Hidden) Markov
Models (Piccarreta and Studer} 2019).

4.2.1 State Independence

In the state independence model, the state at a given position is independent of
the previous one. In order to respect the basic properties of the data, the state
distribution at each time point is respected. Technically, this can be simply achieved
by using a time-dependent transition matrix, where the distribution of the states
are independent of the previous state. This null model is roughly equivalent to the
conditional state independence assumption that underlines latent class analysis.

Figure [11] presents a chronogram and an index plot of some sequences generated
with this null model. While the chronogram seems plausible with time-varying
state distribution perfectly reproduced, the index-plot presents many sequences we
would never observe in the social sciences, with far too many transitions. The spell
organization of the observed sequences is therefore not reproduced by the model.

As a result, the bootstrapped CQI values are low and present a decreasing trend
as shown in Figure With this null model, we always conclude that we found a
significant structure in the data. However this is most probably related to the spell
structure of sequences in the social sciences, that is not respected here. We are
therefore not recommending it for test-like interpretation. However, it might be
used to guide the choice of the number of groups. The standardized CQI indicates
a solution in seven or ten groups.

4.2.2 First Order Markov Null Model

In the first order Markov null model, we use the transition rates computed over
the whole sequences to generate sequence position by position. This is often called
a Markov assumption where the state only depends on the previous one. The first
state of the sequence is randomly selected using the observed proportion of each
state at time one.

5The results are available on request.
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Sequences Generated by the State Independence Null Model
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Figure 11: State Independence Simulation Results. The top plots present a
chronogram and index plot of sequences generated by the randomized sequencing
null models, while the bottom ones presents bootstrapped and observed ASW
values for a varying number of clusters.

Within the life-course paradigm, the notion of timing can either refer to the
states within the process as discussed earlier, or to the timing of the transitions
between the states. By using a first-order Markov null model, we assume that
transition rates are non-time-varying. Therefore, in our framework, a strong
structure would be found if the timing of transitions differ among clusters.

Figure[12| presents a chronogram of all the generated sequences and an index plot
of one of the generated datasets. The generated sequences are quite similar to the
observed ones, except that we observe less transition out of full-time employment
at the beginning and more in the end of the sequences.

As a result of this similarity, the observed ASW is not much higher than the
bootstrapped ones as shown in Figure Here, the highest standardized value is
found for the seven cluster solution. This leads us to think that the seven-cluster
solution has captured a significant structured timing in the data.

4.3 Conclusion

We introduced several null models aiming to provide a baseline interpretation of
CQI values. These models distinguish one another by the kind of structure that
they reproduce or not. The interpretation of the results depends on the similarities
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Sequences Generated by the First Order Markov Null Model
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Figure 12: First Order Markov Null Model Simulation Results. The top plots
present a chronogram and index plot of sequences generated by the randomized
sequencing null models, while the bottom ones presents bootstrapped and observed
ASW wvalues for a varying number of clusters.

and differences between the observed and generated sequences. In this section, we
take a broader perspective and discuss the added value of each null model and its
typical use.

Table [1] presents some indicators of the dissimilarity between the data generated
by a null model and the observed ones. We do so by computing the Manhattan
distance between, on the one side, a distribution or a set of indicators of the original
data, and, on the other side, the same indicators computed on the data generated
by a null model. These dissimilarities are computed on the overall state frequencies
(across all-time points) and average spell duration (in each state separately) to
measure differences in durations. The timing dimension is captured by measuring
difference in the time-varying state distribution and time-varying transition rates.
Finally, the differences in sequencing are measured through the use of transition
rates among sequence of spell, ignoring duration.

The value of these indicators cannot be interpreted as they depend on the scale
of each aspect. We standardized them by dividing by the value of the “combined
randomization” null model. The choice of this model is justified by the fact that it
is the most random, while still keeping the spell structure of sequences.

As expected, the “combined randomization” model presents the most important
dissimilarities in all measured aspects. The only exception is found with the “state
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Table 1: Dissimilarities between original and simulated professional and co-residence
sequences for different null models. A greater value and darker gray scale relate to
a higher dissimilarity on the specified aspect.

Combined Sequencing Duration State indep. FOMM

Coh  Prof Coh Prof Coh Prof Coh Prof Coh Prof

0.36 0.00 0.00 020 0.10
- 0.66 J2VOOoN 025 0.23
0.76 034 0.00 0.00 024 0.17
0.70  0.64

0.01 0.00

0.12  0.10
0.30 0.12
0.55 0.42
0.88 =~ 0.74

Overall state distribution
Average spell duration
Time-varying state distribution
Time-varying transition rate
Spell transition rates

FOMM stands for “First Order Markov Model”.

independence” model that produces very unlikely sequences with very short spells
and, for the same reason, very different time-varying transition rates.

As intended, the “sequencing” null model mainly differs from the original data
in the spell transition rates (and therefore the sequencing of the state), and is quite
similar regarding spell duration. This null model also randomizes, although to a
lesser extent, the timing of the state and transitions.

The “duration” null model keep the sequencing of the original data, but ran-
domize duration and timing. It should be noted that duration differences are more
important for the co-residence than the professional trajectories. This is linked
to the share of sequences that stay in a single state that are unaltered by the
null model. Theses kinds of sequences are much more frequent in the professional
sequences, leading to fewer differences according to this dimension. For this rea-
son, this null model should be primarily used when such kinds of sequences are
infrequent.

As explained, the “state independence” model doesn’t reproduce the spell
structure of the sequences, leading to huge, but unlikely differences in the spell
duration distribution and the transition rates. This null model should therefore be
used with caution.

The “First-Order Markov Model (FOMM)” produce the most similar sequences
on every aspect except on the time-varying transition rates. For this reason, it
is a reasonable null model when we are interested in the timing structure of the
transitions within the sequences.

While null models randomizing duration favor the two or three cluster solutions
for the professional trajectories, those randomizing timing and sequencing (i.e.
sequencing and FOMM) would lead to the choice of the seven cluster solution.
In all cases, a test-like interpretation of the results lead to the conclusion that a
significant timing, duration or sequencing structure was found in the data. We
can therefore be confident in the interpretation of our typology in seven groups for
instance.
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Figure 13: Final Typologies of Professional Trajectories in Switzerland

This interpretation can be confirmed by looking at Figure where the three
and seven cluster solutions are presented. The three clusters solution mainly
distinguishes the patterns according to the overall time spent in the three most
frequent states: full-time, part-time and non-working. The seven cluster solution
makes further distinctions according to the timing (cluster 3 vs 4 or cluster 2 vs 6),
but also the sequencing (cluster 6 vs 7 for instance).

In our sense, the choice between these solutions is no longer a statistical
one. They were both validated by the proposed procedure as were all cluster
solutions with less than height groups. The choice should be made according
to the application and the theories that are being tested. Is it worth having
seven categories representing the professional trajectories? Should we distinguish
according to the timing and sequencing, or mainly to the time spent in each state?
The aim of the validation procedure is to avoid drawing wrong conclusion about
the structure of the data, not to replace the theory of the domain under study.
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5 Extension to the Multichannel Case

Multichannel sequence analysis (MCSA) refers to the joint clustering of parallel
sequences, such as professional and family trajectories (Pollock, 2007; (Gauthier
et al., 2007; [Piccarretal 2017). The aim is generally to build a single typology for
the two (or more) sets of sequences.

Generally speaking, two different uses of MCSA can be distinguished (Studer],
2015). First, we might have several indicators of the same underlying trajectory. For
instance, the professional career might have been measured with several indicators
such as hierarchical position, income level and occupational rate. In this case, the
goal is to build a typology of professional trajectories. Although we technically
use parallel sequences, we still aim to study a single career. For this reason, the
previously introduced null models are perfectly suitable. Indeed, we need a null
model for the underlying unique dimension: the professional trajectory in our
example.

The second and most frequent use of MCSA is to build a joint typology of
trajectories of two or more life domains. The aim is generally to understand how
the two trajectories are intertwined. For instance, in our sample application, we
are interested in building a joint typology of family and professional trajectories
in Switzerland. The relative absence of childcare system and the strong male-
breadwinner norms in Switzerland lead us to think that the two types of trajectories
are strongly linked, at least for women.

As point out by |Piccarreta, (2017)), such a use of MCSA is only meaningful if
the two life domains are associated. The MCSA joint typology summarizes the
association, if there is one... or not. Let us take a small example to illustrate this.
Suppose that we are interested in the joint clustering of family and professional
trajectories, and that there are two types Fi, Fy of family trajectories and three
types Pp, P», P3 of professional careers. If family and professional careers are
independent, we should identify six types in our joint typology: Fi/P;, Fi/Ps,
F\/Ps, F5/ Py, F5,/P, and F,/P;. Such a typology is generally unclear because the
family trajectory in Fy/P; and F; /P, would typically differ by small variation and
it will be hard to know whether it should be interpreted or not.

On the contrary, if there is a perfect association between professional and family
trajectories, a joint typology is very useful and an efficient way to summarize
the association. Using our previous example, we could have only three types to
summarize each combined trajectory Fy /Py, Fy/P, and F,/P;. We could therefore
conclude that F} generally goes in pairs with P, while £ is generally associated
with either P, or Ps.

MCSA should therefore only be used when the parallel trajectories are inter-
twined. Based on this reasoning, we extend our framework to validate an MCSA
typology. In this case, we want our null model to reproduce any structure in each
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channel taken separately. Indeed, the goal is to capture the structure stemming
from the association between the channels, not the structure of each channel taken
separately. On the contrary, in our null model there should be no association
between the channels.

This can be achieved using permutation tests. These tests work as follows.
The first channel is kept as it appears in the data, while the observations of the
second channel are randomly permuted. By doing so, any association between
the two channels is removed. The procedure can be easily adapted to more than
two channels by randomly permuting any additional channels. Our null model
therefore keep the structure of each channel taken separately while randomizing
the association between channels.
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Figure 14: Multichannel observed and bootstrapped ASW-value for a varying
number of groups and evolution of the standardized ASW.

Figure [14] presents the values of the CQI for the joint clustering of family and
professional trajectories for our whole sample. As before, the gray lines show the
values of the 1000 random permutations in the data. The observed CQI values
always lies within the observed confidence interval. We can therefore conclude
that our joint clustering do not capture more structure than a situation without
any association between the channels. It might be better to consider creating two
separate typologies. In all cases, the bootstrapped 90% interval is quite low, as
compared to the values proposed by |Kautfman and Rousseeuw (1990)). This can
be explained by the high heterogeneity of the data as soon as several channels are
taken into account. This should be the case in most MCSA applications.

Figure [15] presents the same analysis, but focusing only on women. We get a
different picture. Indeed, we observe a better clustering quality for the two, six,
seven and height cluster solutions. The difference in conclusions for men and women
can be explained by the patterns of men. Most men follow the same full-time
professional pattern, but different types of family trajectories. For men, there is
therefore almost no association between channels, they are independent. However,
there is an association for women and we found a significant common structure
with our typology.
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Figure 15: Women only: observed and bootstrapped ASW-value for a varying
number of groups and evolution of the standardized ASW .

Aside from providing baseline value for the CQI in MCSA, the results of the
proposed extension also support a nice test-like interpretation. We can compare
the MCSA typology to the case when no association is found in the data. We are
confident that this is a useful addition to the MCSA methodology.

6 Conclusion

In this article, we proposed a methodology for the validation of sequence analysis
typologies based on bootstraps. The method works by comparing the quality of the
obtained clustering with the quality obtained by clustering similar but unstructured
data. If the quality of our clustering fall in the range of what we usually observes for
unstructured data, we can conclude that the structure found with our clustering is
weak. On the contrary, if our clustering quality is much higher, we can be confident
and assess the relevance of our typology.

In order to use the framework, we need a null model to generate similar
but unstructured data. We proposed several null models aiming to test different
structuring aspects of the sequences that are important in life course research,
namely sequencing, timing and duration. We also extended the framework to
multichannel sequence analysis by looking at the structure stemming from the
association between the channels.

The proposed methodology is in our sense a great addition to sequence analysis.
It is a first step toward an integrated approach for the evaluation and validation of
sequence analysis typologies. The lack of a proper methodology featured among
the long-lasting critics against sequence analysis.

The proposed methodology provides expected behavior of cluster quality indices
for different kind of structure. This allows to give a better interpretation of the
quality of the clustering and the kind of structure found in the data. It also
supports a test-like interpretation. Finally, the proposition of several specific null
model’s forces us to think about the kind of structure we are looking for in the
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data. We think that this is one of the key strengths of the generic framework
proposed by (Hennig and Liao, [2010)). This question should be answered based on
social-science arguments, and will therefore always be application specific. However,
the proposed null models provide some directions to think about it based on the
life-course paradigm.

The proposed methodology focus on two aspects of the validation of a typology
from a statistical perspective, namely within-cluster homogeneity and between
cluster separation. However, other aspects are also of key importance. [Han et al.
(2017) stress that a good typology should reproduce known association with other
key variables such as education or gender. In Hennigl (2007) and Hennig (2008), the
emphasis is put on the stability of the clustering across several samples. Finally,
many articles stress the key importance of the interpretability and theoretical
soundness of the results (see for instance |Piccarreta and Studer, 2019). All of
these aspects are important and should be taken into account. However, we still
lack a well-defined integrated approach to do so. This is probably one of the most
important challenge facing sequence analyses.
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