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A u t h o r  

Le Goff, J.-M. 

 

A b s t r a c t  

The marriage process in a cohort is sometimes analyzed with the Hernes model. This model 
presents a convenient property that clearly allows one to distinguish the quantum effect in the 
cohort from the tempo effect. Hernes (1972) formulated originally his model in terms of diffusion 
or contagion of marriage from people who were already married to those not yet married. The 
spread of the proportion of married people in the cohort has an increasing effect on the risk of 
marriage for singles. However, this increasing effect is slowed down due to facts that unmarried 
people progressively cease to be attractive on the marriage market when aging and that because 
the number of potential partners decrease. Hernes mentions that this decreasing force could be 
related to another mechanism in which each individual in the cohort could be heterogeneous in 
his or her susceptibility to marriage. This assertion, however, does not anymore correspond to his 
model, as it is formalized. This paper first develops models corresponding to this mechanism, the 
gamma-logistic and gamma-mixed influence diffusion models in which heterogeneity in 
susceptibility is hypothesized to be distributed as a gamma function. The second part is devoted 
to developing an application of the gamma-mixed-influence model on data from the Wisconsin 
Longitudinal Study and to comparing results with those obtained by the estimation of the Hernes 
model. 
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1. Introduction 

The Hernes model is classically used to analyze marriage across cohorts (Diekmann, 1989; 

Goldstein & Kenney, 2001; Hernes, 1972). This model presents a property to clearly distinguish 

the quantum effect in the cohort (i.e., the proportion of married people) from the tempo effect (i.e. 

the timing of marriage) (Billari & Toulemon, 2006). Unlike other models used to analyze the 

marriage processes—for example, the Coale-McNeil model—the fraction of persons in the cohort 

that remains unmarried is not considered a subpopulation predetermined from the starting point 

process not to wed (Coale & McNeil, 1972). The Hernes model was originally estimated on 

aggregated data. It has been incorporated in the corpus of event history analysis models and can 

be estimated on individual life course data (Wu, 1990; Rohwer & Pötter, 2002). 

In his seminal paper, Hernes (1972) formulates his model in terms of diffusion or contagion of the 

idea of marriage from people already married to those not yet married. Contagion is determined by 

a mechanism of imitation by non-married persons or by a mechanism of persuasion of married 

persons on non-married individuals. Whatever the mechanism, the spread in the proportion of 

married people in the cohort has an increasing effect on the risk of marriage. Hernes postulates 

that an opposing force however slows down this diffusion process because unmarried people 

progressively cease to be attractive on the marriage market as they age or because the number of 

non-married persons decreases. As a consequence, there is a decreasing effect on the hazard of 

marriage. The overall hazard of marriage then results in the following two components: an 

increasing component in relation to the diffusion of marriage in the cohort and a decreasing 

element as a consequence of the depreciation of marriageability. Later, Diekmann (1989) proposed 

the log-logistic model as an alternative to the Hernes model, with a similar opposing mechanism of 

diffusion and depreciation of marriageability. 

In his 1972 paper, Hernes mentions that the decreasing force can result from another mechanism; 

aging people who remained unmarried are those, for example, who have never held a prestigious 

job and, for this reason, are unattractive on the marriage market. The point here is about 

individual heterogeneity. In another and more precise paper, Hernes (1976) uses the term 

structural heterogeneity, which is defined as “when a capacity is differentially distributed in the 

population” (p. 428). The mechanism underlying the distribution of the risk of marriage for the 

cohort is different from the precedent described one but is similar to those described with notions 

of unobserved heterogeneity or of frailty in unemployment studies and mortality studies, 

respectively (Heckman & Singer, 1982; Vaupel, Manton, & Stallard, 1979). In the present case, 

those in the cohort who have a better ability to marry will wed earlier, and the weight of people 

with unfavorable capacities in the unmarried sub-population will become progressively higher and 

higher as time goes on. As a consequence, the differential ability results in a negative effect on the 

risk to marry at the level of the population, which slows the increasing effect due to the 

mechanism of diffusion. A similar effect could be described if each individual in the cohort differs 
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by his or her own “susceptibility” to adopt the behavior when in contact with someone already 

married who transmits the idea of marriage (Strang & Tuma, 1993). 

As in unemployment or mortality studies, differential ability or susceptibility may be due to 

unobserved characteristics of an individual. This unobserved heterogeneity then has to be 

incorporated in the models. In this paper, we propose two diffusion models that introduce an 

unobserved ability or susceptibility of persons to adopt behavior or an innovation that can be 

estimated on individual retrospective data. In the first model, the gamma-logistic model, the 

diffusion mechanism is described by the classical logistic curve, while the unobserved ability or 

susceptibility of individuals is patterned by a gamma distribution. In the second model, the 

gamma-mixed influence diffusion model, the unobserved heterogeneity is previously patterned by 

a gamma distribution, while there are two kinds of influence (Coleman, 1964; Bass, 1969): the 

first is due to internal influence—that is, influence of persons who already adopted the behavior on 

those who have not; the second is due to external influences such as media, advertising, and 

institutions that diffuse norms about marriage. 

In the first section of the paper, after a recall of the Hernes model specification, we present the 

gamma-logistic and the gamma-mixed influence models. In the second section, we apply the 

second of these models to the case of marriage of men and women interviewed in the Wisconsin 

Longitudinal Study (Hauser, 2009). We are especially interested in comparing the fit of the 

gamma-mixed influence model with the fit of the Hernes model. 

 

2. Time Dependency in Diffusion Models 

 

2.1 The general Hernes model 

This section discusses a general family of diffusion models proposed by Hernes in his second 

influential paper on diffusion models (Hernes, 1976). This general formulation is interesting 

because all models evoked in the introduction of the present paper—the Hernes, log-logistic model, 

logistic, and mixed influence models—are particular forms of this general formulation. This model 

could be formalized for each case where there is a diffusion process, such as the propagation of an 

innovation, a behavior, a rumor, and, eventually, a contagious illness. However, in particular, we 

have in mind the diffusion of marriage in a cohort or a group of persons. The model can be read as 

a general mixed-influence diffusion model (Mahajan & Peterson, 1985) in which transmission 

coefficients associated with external and internal influences vary with time. As originally 

formulated by Hernes (1976, p 434), this model does not include unobserved susceptibility or the 

ability to adopt the behavior, but we will include it later. The model assumes that there are no 

social barriers between groups of unmarried and married people. Let F(t), the cumulative 

proportion of persons already married between t0 and t; f(t), the probability density to get 
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married, that is the derivative of F(t); S(t) the complementary of F(t), i.e., the proportion of 

people who are not married at time t: 

 

)()()()()()( tStFtqtStptf +=         (1) 

 

The product F(t)S(t) represents the probability for two persons, one unmarried the other married, 

to interact. q(t) is the rate of diffusion or contagion at time t, given that an unmarried person is in 

contact with a married person during a unit of time. In this general formulation, this rate is a 

function of time. In the case of marriage, the coefficient of internal diffusion q(t) can be 

understood as the rate for a single person to get married, given he or she receives information 

about marriage from an already married person in the cohort. The level of this rate at time t can 

depend on several elements related to the predisposition of the person to marriage and to his or 

her position on the marriage market. As formulated in this model, each person already married, 

even for a long time, is considered to have a potential influence on an unmarried person, and this 

influence is equal among all already married people. p(t), also a function of time, is the rate of 

adoption of the behavior due to external influences such as media or norms on marriage. Strang & 

Tuma (1993) suggest another interpretation in which p(t) is no longer related to external influence 

but to the effect of individual endogenous characteristics on the behavior adoption rate. 

This model can be rewritten as a hazard rate function instead of a probability density function. If 

h(t) symbolizes this hazard rate, as h(t)=f(t)/S(t): 

 

)()()()( tFtqtpth +=                     (2) 

 

In the case of q(t)=0, adoption of diffusion depends only on the intrinsic characteristics of each 

individual or on external influence. In this case, p(t) can be shaped by one of the usual functions 

applied to a parametric event history model. For example, if p(t) is considered constant, i.e., 

p(t)=p , then an exponential model is estimated. But if p(t) is considered always increasing or 

decreasing, it can be estimated by a Weibull or a Gompertz function.  

In the case of p(t)=0, the process of adoption of the behavior depends only on internal influences. 

In this case, if q(t) is constant, i.e., q(t)=q, the model corresponds to the well-known logistic 

growth with q as the coefficient of diffusion (Coleman, 1964; Griliches, 1957; Mahajan & Peterson, 

1985). In his first paper on the diffusion of marriage in American cohorts, Hernes (1972) supposes 
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that q(t) is a decreasing function of time because unmarried people progressively lose their ability 

to attract potential partners as they grow older. This depreciation of the “marriageability” of a 

person on the marriage market draws a force opposed to the force that results from the process of 

diffusion. An alternative meaning of this decreasing force on the hazard rate of marriage is 

proposed by Diekmann (1989), who argues that it corresponds to a process of isolation of single 

persons as they get older due to the rarefaction of potential partners on the marriage market. A 

third mechanism can be related to the progressive habituation of a person to remain single and to 

have one’s one way of doing things incompatible with a life with a partneri. The formulation 

proposed by Hernes for q(t) is:  

 

tAbtq =)(            (3) 

 

A is the initial average of “marriageability” (A>0), while b is the constant of deterioration of this 

ability (0<b<1). The Hernes model owns the property to be defective—the cumulated proportion 

F(t) of married persons does not necessary reach 1 at the end of the marriage process. A fraction 

of persons in a cohort is excluded from marriage due to the negative force on the marriage hazard 

rate becoming higher in absolute value than the positive force due to the increase of already 

married persons. It is to worth noting that a difference between the number of men and women 

would not correspond to Hernes hypothesis of a progressive negative force: In this case, if the 

interest is on the marriage of men and if there are more men than women in the population, it 

would result in a classic cure model in which a fraction of men would be determined to remain 

unmarried from the staring point of the marriage process (Box-Stephensmeier & Jones, 2004; 

Schmidt & Witte, 1988).  

Another decreasing function with time has been proposed by Diekmann (1989), for whom the most 

used log-logistic model can be interpreted as a diffusion model with a decreasing coefficient of 

diffusion with time. In the case of the log-logistic model: 

 

t
btq =)(                       (4) 

 

Where b>0. The log-logistic model is more parsimonious than the Hernes model as it only has two 

parameters to estimate: one related to the initial conditions and the second to the decrease in 

time. However, unlike the Hernes model, the log-logistic model is not defective, which means that 
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everyone is considered to have adopted the innovation by the end of the process. Immunity can 

however be considered with the hypothesis that a fraction of persons in a cohort will never adopt 

the innovation (Brüederl & Diekmann, 995). This hypothesis, which corresponds also to estimate a 

cure model, means that according to unobserved characteristics, some people are determined from 

the beginning of the process to remain unmarried. Such a model could work, for example, if there 

is a difference between the number of men and women in the cohort. Generalizations of the 

Hernes and/or the log-logistic models have been proposed by Banks (1994), Braun & Engelhard 

(2004), Diekmann (1992) and Yamaguchi (1994). Whatever these generalizations, the principle of 

a diffusion process countered by a loss of abilities remains.  

The classic mixed influence diffusion model corresponds to the hypothesis in which in equations (1) 

and (2), p(t) and q(t), are constant (p(t)=p; q(t)=q) (Mahajan & Peterson, 1985). This model was 

introduced in mathematical sociology by Coleman (1964), and it has been rather diffused in 

marketing research, as a consequence of the work of Bass (1969). In this discipline, the peculiarity 

of this model is that it is generally estimated on aggregated data on the diffusion of innovation 

products (Mahajan & Peterson, 1985). This model has been less estimated on individual data of 

adoption. Its adaptation to the corpus of parametric methods of event history analysis with a 

procedure of estimation based on the maximization of a likelihood equation does not present many 

difficulties (Bass, Jain, & Krishnan, 2000; Roberts & Lattin, 2000). This model is written: 

 

[ ] )()()( tStqFptf +=          (5) 

 

Figure 1 presents the density distribution f(t) of the mixed influence model when p=0.01 and 

q=0.03, with the contribution to this density of each influence. The contribution of the external 

influence on density is decreasing while the contribution of internal influence first progressively 

increases and then decreases. The mixed-influence model has sometimes been interpreted to allow 

the distinction between two groups of persons in a cohort: a first fraction of persons, called 

innovators, adopt the behavior under external influences, while others, called imitators, adopt it 

through channels of internal influences (Bass, 1969). This point of view, however, has been 

criticized for the fact that the mixed-influence diffusion model, as specified, does not allow a clear 

distinction between two groups with different behaviors of adoption. As it is formalized, this model 

means that one person can adopt the innovation either under external influences or internal 

influences, the weight of each of these influences varying over time (Tanny & Derzko, 1988).  
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Figure 1. Density function f(t) of a mixed-influence diffusion model and contribution of external and 

internal influences on density 

The mixed-influence model has been much used in marketing research in order to analyze 

diffusion of innovation in consumption products. We think that this model is also interesting to 

be applied on the analysis of demographic process such as marriage or union formation. In such 

cases, external influences can be interpreted as social pressure coming from persons other than 

peers who already adopted the behavior, for example, parents or relatives. These social 

pressures can also come from institutions or network channels that diffuse social norms on 

marriage. Moreover, the distinction between internal and external influences can be related to 

the distinction between the two elements of social interactions as theorized in family planning 

studies (Bongaarts & Watkins, 1996; Montgomery & Casterline, 1996; Kohler, 2001). The first of 

these elements is social learning, which corresponds to the acquisition of information about the 

innovation or the behavior through others. In the case of marriage, information is, for example, 

about others already married. Social learning can then be assimilated as internal influence. The 

second element of social interactions is social influence, which refers to social conformity 

pressures. It can be considered as external influence. The mixed influence model, as initially 

formulated by Coleman (1964), is not defective; it does not allow that a fraction of individuals in 

a cohort remain unmarried. Such a fraction can be introduced by estimating a split-population 

model in which, for unknown reasons or characteristics, a portion of individuals is determined to 

remain unmarried from the beginning of the process or if there is a difference between the 

number of men and women in the population. However, the introduction of general unobserved 

heterogeneity can also be envisioned. 
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2.2 Unobserved Individual Susceptibility 

The Hernes and log-logistic models are based on the observation that for most diffusion processes, 

the shape of the growth curve is an asymmetric S shape, “with the upper shank of the S being 

more extended” (Lekvall & Wahlbin, 1973, p. 364). Such an asymmetric shape is usually observed 

in the case of demographic behaviors and events of the transition to the adulthood, such as living 

home, birth of the first child, and especially marriage. Hernes (1972) and Diekmann (1989) 

hypothesize that this asymmetry corresponds to a decrease in the transmission rate q(t) when 

time increases. However, an alternative hypothesis can be proposed. This hypothesis leans on 

notions of unobserved heterogeneity or frailty as it is developed in the analysis of unemployment 

and mortality (Aalen, Borgan, & Gjessing, 2008; Heckman & Singer, 1982; Vaupel et al., 1979). In 

the domain of mortality, frailty models assume that the general shape of the hazard rate is the 

same for each individual of a population but that each individual is characterized by his or her own 

frailty, which remains invariant as time passes (Vaupel et al., 1979). The hazard rate of death for 

an individual corresponds to the product of the general shape of mortality hazard and individual 

frailty. Such a model means that at the beginning of the process, most frail people die while less 

frail people take more and more weight in the population to survive. As a consequence, the hazard 

rate of decease at the level of the population is decreasing.  

By analogy with frailty models, the diffusion processes of an innovation or behavior can be 

decomposed into the following two elements: first, the general shape of the diffusion, which could 

be called—following Strang & Tuma (1993)—the infectiousness from those who have adopted the 

behavior or, preferably, the transmissibility of the innovation to persons who have not yet adopted 

the behavior; second, the susceptibility or the ability of an individual to adopt the innovation or the 

behavior. The susceptibility is the equivalent of the frailty or the unobserved heterogeneity with 

the common property to be unobserved. This unobserved susceptibility can be related to the ability 

of a person to be in contact with persons who have already adopted the innovation or to a person’s 

ability to accept an innovation or a behavior when there is such a contact. By hypothesis, it 

remains invariant as time goes on. As in the case of frailty models, we suppose a proportional 

effect of individual susceptibility to the risk of adoption of the behavior. A first model incorporating 

individual susceptibility that can be envisaged is the simplest model of logistic growth:  

 

[ ])()|( tqFuuth iii =                 (6) 

 

Where ui represents the individual unobserved susceptibility to adopt the innovation and 

)|( ii uth represents the hazard rate for an individual given that he has susceptibility ui to adopt. q 

expresses the coefficient of transmissibility from a person who already adopted it. If we suppose 
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that ui is distributed such that its mean is equal to 1, then q represents the coefficient of 

transmission of the behavior to a person with an average susceptibility of adoption.  

The meaning of individual susceptibility has to be better specified. It is important to underline that 

this susceptibility is related to a person and not to possible transmitters and their “infectiousness” 

(Strang & Tuma, 1993). As in the Hernes or log-logistic models, the model expressed in Eq. (6) 

supposes that everyone who adopted the behavior has the same infectiousness, whatever the 

moment of the adoption or the social proximity to potential adopters. Susceptibility can be related 

to two series of factors: The first factor is related to the level of contact with others and, more 

generally, to the openness to receive information or, referring to social interactions approach 

(Bongaarts & Watkins, 1996), to learn from others. The second factor is related to the probability 

that someone adopts the innovation after he/she has acquired information about it. For example, 

in the marketing research tradition, susceptibility is related to the ability of a person to purchase a 

given product (Jeuland, 1981, qtd. in Mahajan & Peterson, 1985; Roberts & Lattin, 2000). This 

suggests that susceptibility depends on the properties of the innovation, more generally of the 

object of diffusion. Individual susceptibility is specific to the innovation and can be different 

according to what is diffused. It then can be related to the openness toward the innovation but 

also to the context in which the person is living. For example, if the behavior is marriage, 

susceptibility can depend on the degree of aversion to the marriage of the person and his/her 

attractiveness on the marriage market. The more a person is isolated from others or the more 

aversion he/she has toward the behavior—or the less the context is favorable for him/her—the 

lower his/her susceptibility toward adopting the behavior.  

In Eq. (6), the transmissibility process follows a logistic growth. Two opposite “forces” play a role 

on the process of adoption of the behavior. As before, the first force is related to the increase of 

people who have already adopted the innovation with the effect of increasing the hazard rate. The 

second force is related to the differentiation of susceptibility among individuals. By analogy with 

frailty models, most susceptible persons will first experiment with the event. Consequently, less 

susceptible individuals will progressively take more and more weight in populations that did not yet 

experiment with the event. For some of them, susceptibility ui can be so low that the hazard rate to 

adopt the behavior will approach zero over the time, which means that they will not experiment 

with the event. Such a model with a constant rate of transmission from people who already 

adopted the behavior to those who did not, and with individual susceptibility to adopt the behavior, 

can explain a S growth curve with a more extended upper shank as well as the Hernes or the log-

logistic models.  

An individual susceptibility element can also be added to the classic mixed influence model 

(Jeuland, 1981, qtd. in Mahajan & Peterson, 1985). The hypothesis here is that an individual’s 

susceptibility to adopt is similar whether under external or internal influence. 
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[ ])()|( tqFpuuth iii +=                       (7) 

 

In this case, p and q represent the average susceptibility of adoption under each of the influences. 

As before, the model displays two opposing forces—one related to the increase of the force of 

adoption due to increase of persons that already have adopted the behavior, while the second is 

related to the increase of the weight of those less susceptible to adopt in the population. Finally, 

through similarity with the general model expressed in Eq. (1) and (2), we can write a general 

model in which external and internal diffusion coefficients are expressions of time and into which is 

introduced unobserved susceptibility:  

  

[ ])()()()|( tFtqtpuuth iii +=                      (8) 

 

2.3 From Individual Hazard to Population Hazard 

Equations (6) to (8) are expression of an individual hazard rate that depends on the adoption 

susceptibility of i. Following our analogy between the susceptibility to adopt an innovation or 

behavior and the frailty in mortality research or unobserved heterogeneity in unemployment 

studies, we now assume that ui is gamma distributed with a mean and a variance equal to 1 and κ, 

respectively. With the assumption of a gamma distributed unobserved heterogeneity model, it has 

been shown that whatever the shape of the underlying or basic hazard rate (Aalen et al., 2008): 

)(1
)()(
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tth
κ
α
+

=                        (9) 

and:  

( ) κκ
1

)(1)( −+= tCtS                        (10) 

h(t) and S(t) represent, respectively, the hazard rate at the level of the population and the 

probability of not having experienced the event or the behavior at time t, while α(t) represents the 

basic hazard rate and C(t) represents the cumulated basic hazard rate from 0 to t: 
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Expressions (9) and (10) mean that: 

          (12) 

 

As S(t) = 1-F(t), and if we consider that α(t) is shaped by the Hernes mixed-influence diffusion 

model as expressed in Eq. (2), i.e., α(t) = [p(t)+q(t)]F(t), then: 

 

        (13) 

 

The density of adoption then becomes:  

 

               (14) 

 

As the Hernes (1976) mixed-influence diffusion model is the more general expression we have, 

this property of diffusion models with a gamma-distributed susceptibility remains when q is a 

constant and when p is equal to 0 (logistic diffusion model) or is constant (classic mixed-influence 

diffusion model).  

 

3. Application to Wisconsin Longitudinal Study Data 

In this section, we wish to compare the gamma-mixed-influence model with parameters p and q 

constant with the Hernes model. We estimate these models on marriage behaviors of people 

interviewed in the Wisconsin Longitudinal Study Sample (WLS) (2006). The first question we wish 

to answer is which model fits better with data. The second question is about eventual links 

between different parameters of the gamma mixed-influence model. 

 

3.1 Models integration and estimation 

After integration (Hernes, 1972) and reparametrization (Wu, 1990), the Hernes model is specified 

with three parameters to be estimated: 

  

( )κα )()()( tStth =
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            (15) 

 

and: 

                      

                       (16) 

 

Where λ=b, β=-A/log(b). 

σ is related to the quantum effect of marriage, λ to the speed of the decline of marriageability, 

while β is inversely related to the initial proportion of persons adopting marriage (Billari & 

Toulemon, 2006). As λ and β are positive definite and the proportion σ is bounded between 0 and 

1 included, a better way to fulfill these conditions is to estimate the logarithm of the two first 

parameters and the logit of the third:  

                     (17) 

 

 

Parameters can be estimated by maximizing the logarithm of a likelihood equation; this equation 

corresponds to traditional likelihood equations for survival data (Wu, 1990). 

The gamma-mixed influence model with parameters p and q constant can be integrated as a 

standard mixture model (Rohwer & Pötter, 2002). In this case: 
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Where κ represents the variance of the gamma distribution of individual susceptibility. As these 

three parameters are positive definite, the logarithm of these parameters have to be estimated.  

 

                       

            (20) 

 

These three parameters can be estimated by the maximum likelihood method. Note that the 

likelihood equation (not presented here) is two times derivable which means that variances of 

parameters can also be estimated. 

Hernes models are often estimated on birth cohort samples at a country level (Billari & Toulemon, 

2006; Dieckmann, 1989; Goldstein & Keney, 2001; Hernes, 1972). It is not a problem to estimate 

them on such samples with the aim to isolate quantum and tempo effects. However, it seems to us 

to be more awkward to estimate these types of models on a whole cohort if the theoretical frame 

is related to the analysis of a diffusion process in a behavior. The implicit hypothesis here is that all 

persons of the cohort that do not adopt the behavior at time t can be in contact or have 

information about those who already adopted the behavior, despite spatial and social distances 

between persons. This hypothesis does not seem to be realistic, and it should be better to estimate 

models in which weights are given according to distances between persons (Hedström, 1994; 

Montgomery & Casterline, 1996; Palloni, 2001; Strang & Tuma, 1993) or, like sometimes proposed 

in epidemiology, models in which is integrated a “mixing” parameter which measures the average 

probability for one person to have contact with others (Garnett, 2000). Models like the Hernes 

model and those we propose with the theoretical frame of social diffusion can however be 

estimated in the case of groups of people who are living in the same micro-local place or who were 

socialized during a period in the same institution, for example, in a school. If the analyzed 

behavior, for example, marriage, generally occurs after that all members of the group left school, 

we can suppose that, first, all people know one each other, at least superficially, and second, that 

all persons can have information about others, even if there is no direct contact between them: the 

network of peers, i.e., people socialized in the same school, forms a channel of diffusion (Strang, 

1991) in a sense that it is not necessary for someone to be directly in contact with another to learn 

that this other adopted the behavior. Such a hypothesis of a diffusion channel is compatible with 

models like the Hernes model in which the adoption of the behavior depends on the proportion of 

those who already adopted the behavior. It is also compatible in models like the logistic-gamma 

and the mixed-influence gamma models in which the adoption of a behavior does not depend on 

the proximity to or the infectiousness of a person that already adopted the behavior but from the 

ability of a person to be informed about behaviors of others or their ability to imitate them. 

exp(c)
)exp(
)exp(

=

=

=
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3.2 Wisconsin Longitudinal Study Data  

Data of the Wisconsin Longitudinal Study Sample allows distinguishing people according to the high 

school they attended (Hauser, 2009; WLS, 2006). The Wisconsin Longitudinal Study is a panel 

composed of one-third of men and women who graduated from a Wisconsin high school in 1957 (N 

= 10,317). Several interviews were conducted between 1957 and 2005 on this sample, sometimes 

with their sibling or marital partner. An interview in 1975 on a subsample of 4,330 men and 4,808 

women (N = 9,138) reconstitutes the marital history of each individual, especially the date of the 

first marriage. Despite the ancientness of data that may not reflect contemporary behaviors of 

union formation, the Wisconsin Longitudinal Study Sample corresponds to our desire to use data 

for which the theoretical frame of a diffusion process can be developed. 

As there is the possibility to distinguish persons according to the school they followedii, we can 

suppose that peers that leave a school in the same year form a channel of diffusion. We estimate 

the Hernes model and gamma-mixed-influence model in each group in which at least thirty men 

and/or women were sampled in the survey with the aim to see which of these two models better 

fits marriage processesiii. It should be noted that the estimation of the diffusion model on each 

subsample necessitates the hypothesis that the marriage diffusion process measured with selected 

persons in the sample reflects ones in the entire school cohort. A first examination of data shows 

that marriages are rare before June 1957 but start to increase at this date, especially in the case 

of women. We suppose that this is because most youth left school after their graduate degree. We 

decided to consider May 1957 as the starting time (t0) of the marriage process and discounted all 

persons who married before this date. Size and numbers of censored persons for each school are 

indicated in result tables in the annex.  

 

4. Results 

Models were first estimated with the TDA version 6.4 software, especially with the use of the frml 

command, which allows programming likelihood functions for event history modelsiv (Rohwer & 

Pötter, 2002). However, we used the function mle (maximum likelihood estimation) of the library 

stats4 in the R package for definitive estimations (Venable & Ripley, 2002). In the case of the 

Hernes and the Gamma-mixed influence model, parameters were estimated with a quasi Newton-

Raphson method of optimization (method BFGCS). Estimates of both models according to gender 

and schools are reported in tables in the appendix (tables a1 to a4). Note that in some cases, 

estimations gave inaccurate results, in the sense that a parameter was estimated to be very low 

with a large variance. This is the case of 3 schools in 41 with women and 2 in 30 with men. We 

removed these schools in our further comments. 

There are no formal possibilities to compare the Hernes and the Gamma- mixed influence models 

with usual criterions like, for example, the likelihood ratio test, since models are very different 
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while they share the same number of parameters. However, if we nevertheless compare the 

maximum logarithm of likelihood obtained for each model, it is highest in the case of the gamma 

mixed-influence for 35 schools in 38 for women (table 1). Results are more mitigated in the case 

of men as estimations show that the maximum of the logarithm of the likelihood for the gamma-

mixed influence model is higher than the one of the Hernes model in 19 out of 28 schools only. The 

estimated cumulative function of marriage of each model fit with a non-parametric Kaplan Meier 

estimation in the case of the school 1 (55 men and 62 women), as shown in figure 2. Similar 

patterns are found in other schools for both men and women. The hypothesis of the diffusion 

process of marriage with two mixed influences and individual susceptibility then appears to be very 

plausible. The diffusion process thus seems to be an interesting competitor to the Hernes process 

in which people lose progressively their attraction on the marriage market with time. But the 

results could have another interpretation. Indeed, the model formulated by Hernes in 1972 was 

created in a context in which the idea of an individual heterogeneity was not yet introduced in 

survival modelsv. In this perspective, the Hernes model can be then considered as a good 

approximation of the hypothesis that there is an individual susceptibility to adopt the behavior. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fit of the Hernes model and the gamma mixed influence diffusion model in the case of 

the school 1 

A synthesis of estimations in each school of gamma mixed influence models for men and women is 

proposed in Table 1. It is interesting to note that the q parameter of internal influence does not 

seem to differ between men and women. This result means that there is no gender difference in 
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the internal process of diffusion. However, the p parameter of external influence is, on average, 

larger for women than for men, which means that there is greater normative pressure on women 

to marry quickly after leaving school than for men. If the mean of the κ parameter for the variance 

of the gamma distribution is similar between men and women, this parameter seems to be more 

dispersed for women than for men. The distribution of individual susceptibility appears then to be 

more strongly dependent on the school in the case of women.  

Table 1. Synthesis of estimated parameters of gamma-mixed influence models 

 

 

 

Q-plots of estimated parameters show a negative correlation between the p and the q parameter, 

which is especially strong in the case of men (Figures 3a and 3b). The higher is internal influence 

and the lower is external influence. Such a result could indicate that there is a kind of competition 

between the two influences or that the lack of one influence, for example, external influence, is 

compensated by a surplus of the other influence, for example, internal influence. There is no 

strong correlation between parameters of external influence and dispersion of individual 

susceptibility. However there is a positive correlation between the external influence and dispersion 

parameters. Higher is the external influence in a school and higher is the dispersion of the 

individual susceptibility.  

 

 

 

 

 

 

 

 

 

 

Figure 3a. q-plots of parameters of gamma mixed-influence models-men 

Parameter Min Max Mean Var(log(parameter)) Min Max Mean Var(log(parameter))
κ 0.2163 2.0375 0.6960 0.3195 0.3835 1.8810 0.8527 0.1320
p 0.0002 0.0049 0.0018 0.5716 0.0010 0.0251 0.0069 0.5856
q 0.0385 0.1249 0.0611 0.0803 0.0377 0.2013 0.0668 0.1226

Men Women
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Figure 3b. q-plots of parameters of gamma mixed-influence models-women 

 

5. Conclusion 

The Hernes model postulates that a diffusion effect is slowed down by the decrease of the 

marriageability of persons as time goes on. The alternative models we propose are based on 

another suggestion of Hernes (1972, 1976) in which the diffusion effect is progressively 

counterbalanced by heterogeneity in the susceptibility of persons to adopt the behavior. Persons 

with higher susceptibility have a higher risk to adopt, and those who have a lower risk take more 

and more weight in the population of unmarried persons as time passes. The models are similar to 

those with a gamma frailty in mortality studies. Substantially, the gamma-mixed-influence model 

also presents the great potential to allow understanding processes of marriage and other 

demographic behaviors. As it makes the distinction between an external and an internal influence, 

it does not bind the diffusion process only to the influence effect of the cohort or the group. 

Moreover, it introduced the idea that susceptibility to be influenced is not the same for all persons. 

The estimation of the gamma-mixed influence model on the Wisconsin longitudinal data on 

marriage shows that this model seems to fit a little better than the classical Hernes model. But, in 

our opinion, both models approximate the data well. The gamma mixed influence can be further 

developed by taking into account individual characteristics of persons that can have an influence 

on each of the two influence parameters as well as on the individual susceptibility variability. There 

are potentially no difficulties in adding fixed covariates. Moreover, we presented a generalization of 

the model that can be a basis for investigations in order to introduce time dependant covariates 

and to allow the different parameters of internal and external influences to be time dependent. 
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Notes 
 
i Joshua R. Goldstein, personal communication. 
ii Each individuals surveyed was attributed an ID number in which the first three digits was a code 
for the school. Note that we do not have information about the school in standards data files (WLS, 
2006).   
iii We chose a limit of 30 because models cannot be estimated if a sample is under this limit. 
iv Note that an example for the estimation of the Hernes model is proposed in the user’s manual 
(Rohwer & Pötter, 2002). 
v It will be later by Manton, Vaupel & Stallard (1979). 
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Appendix 

Table a1. Results of Hernes models-Men 

School N Estimate Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik
1 55 -2.9623 0.4864 18.0422 4.0622 0.4864 328.3602 1.9351 0.0135 276.4662 -265.5252

31 42 -2.6981 0.5146 14.1471 4.1284 0.5146 269.4392 1.9460 0.0175 216.2683 -206.0673
39 31 -1.9502 0.5904 6.4420 4.4311 0.5904 182.0973 1.9050 0.0306 118.4285 -146.6958
52 34 -3.7768 1.6717 8.5328 4.2359 1.6717 151.4941 2.1850 0.0217 219.5848 -165.5805
62 39 -2.1909 0.4062 11.8164 4.1169 0.4062 290.0043 1.9580 0.0224 171.3211 -185.3116
78 44 -3.2293 0.9256 11.2670 4.3371 0.9256 202.1574 1.9768 0.0172 227.6873 -221.7318

133 34 -2.7385 0.5097 14.7120 4.0150 0.5097 242.7974 2.0769 0.0248 173.9497 -167.8940
137 59 -2.8605 0.5106 16.0248 4.2081 0.5106 294.3074 2.1747 0.0137 344.2064 -289.8286
139 54 -4.1064 1.7270 9.7640 4.4819 1.7270 176.8371 2.2458 0.0135 373.4949 -273.1263
151 62 -2.5966 0.3513 19.1931 4.2307 0.3513 369.2866 1.8651 0.0119 293.1979 -308.7135
159 52 -4.2730 1.9184 9.5174 4.2728 1.9184 169.8576 2.2224 0.0169 291.7582 -249.2428
160 33 -3.5377 1.4961 8.3652 4.1547 1.4961 140.2962 2.0721 0.0227 189.1365 -159.7110
190 33 -4.0610 2.9396 5.6102 4.4790 2.9396 108.9641 2.0922 0.0341 128.5254 -164.5614
192 53 -3.1647 0.7118 14.0709 4.1536 0.7118 267.3501 2.1278 0.0139 326.6993 -254.8241
200 34 -3.7006 1.5316 8.9417 4.3238 1.5316 164.6825 2.1126 0.0224 199.3905 -169.4546
230 41 -4.7273 4.0626 5.5008 4.5977 4.0626 115.9538 2.1105 0.0491 90.7331 -203.6846
232 63 -1.8521 0.1552 22.1030 3.9594 0.1552 502.5194 1.8283 0.0145 231.1015 -298.4852
236 49 -2.6010 0.3530 19.1651 3.7790 0.3530 287.8027 2.3990 0.0299 192.5695 -230.2719
243 34 -4.9107 5.3260 4.5278 4.7076 5.3260 99.3948 2.2483 0.0427 118.5163 -170.9186
245 36 -2.0996 0.3445 12.7975 3.9497 0.3445 255.9237 1.8431 0.0222 152.8260 -171.6982
281 31 -7.7316 30.6573 1.9499 4.7176 30.6573 41.3276 2.5409 0.1415 45.6357 -146.0805
323 52 -2.2206 0.2373 20.7807 3.7266 0.2373 397.2853 1.8427 0.0152 223.8423 -239.6428
334 50 -2.3519 0.3469 15.9460 4.1375 0.3469 305.9168 2.0516 0.0182 231.3262 -244.4407
338 34 -6.0748 15.4807 2.3839 5.0155 15.4807 55.0178 2.2132 0.1565 31.3076 -177.8495
340 48 -1.6212 0.1524 17.2413 3.4889 0.1524 418.4141 2.2005 0.0331 146.1286 -208.4452
372 52 -1.7966 0.1906 16.9317 3.9761 0.1906 398.4982 1.9732 0.0217 179.5456 -244.4176
374 42 -4.5064 2.4657 8.2358 4.2610 2.4657 131.1492 2.3711 0.0163 344.1506 -203.9134
389 39 -2.6299 0.5426 12.7460 4.0492 0.5426 245.5586 2.0342 0.0198 209.0440 -187.5621
422 59 -2.8645 0.5148 15.9383 4.2170 0.5148 309.4356 1.9534 0.0126 303.7945 -289.5065
432 44 -2.1076 0.2582 17.2034 4.0062 0.2582 346.4517 1.7420 0.0177 171.8191 -213.5950

logit(σ) log(λ) log(β)
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Table a2. Results of gamma-mixed influence models-Men 

School N Estimate Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik
1 55 -0.3953 0.1678 0.9312 -5.4900 0.2165 139.1940 -2.8578 0.0832 98.1637 -264.3192

31 42 -0.2049 0.1914 0.2194 -5.8896 0.3342 103.8064 -2.8863 0.1009 82.5489 -205.3663
39 31 -20.2257 10.6170 38.5303 -5.6938 0.1773 182.8204 -4.4789 0.2217 90.4871 -147.8478
52 34 -0.4734 0.2954 0.7587 -6.6842 0.6872 65.0146 -2.6047 0.0986 68.8223 -165.2476
62 39 0.0608 0.1565 0.0236 -6.5268 0.4634 91.9324 -2.8814 0.0770 107.8159 -184.8665
78 44 -0.6976 0.5166 0.9421 -5.6096 0.2835 110.9964 -3.1781 0.1888 53.5104 -220.7413

133 34 0.1808 0.1439 0.2272 -7.0066 0.8267 59.3870 -2.3756 0.0956 59.0026 -166.5815
137 59 -0.3380 0.1769 0.6456 -6.8566 0.3126 150.4021 -2.8834 0.0539 154.1176 -290.7695
139 54 -0.8102 0.4203 1.5616 -6.7288 0.4005 113.0542 -2.9192 0.0832 102.4810 -273.4750
151 62 -0.3225 0.2220 0.4685 -5.5235 0.2020 151.0163 -3.1933 0.1421 71.7782 -306.9494
159 52 -0.9628 0.3401 2.7253 -6.2603 0.2862 136.9489 -2.7295 0.0545 136.7555 -249.2819
160 33 -0.7141 0.4678 1.0899 -5.7633 0.3856 86.1338 -2.8233 0.1347 59.1839 -159.5108
190 33 -1.1968 1.0041 1.4263 -5.7051 0.3258 99.9136 -3.1675 0.1509 66.5020 -163.8517
192 53 -0.4618 0.1827 1.1674 -6.4926 0.3145 134.0530 -2.7653 0.0528 144.9481 -255.0187
200 34 -0.5569 0.3167 0.9792 -6.2374 0.4692 82.9168 -2.8147 0.1011 78.3379 -168.8710
230 41 -1.5310 1.1132 2.1055 -5.3562 0.2317 123.8228 -3.2567 0.1353 78.3926 -201.7476
232 63 0.3583 0.0905 1.4178 -5.9709 0.2742 130.0250 -2.7906 0.0880 88.5282 -297.4653
236 49 0.1440 0.1026 0.2022 -8.3386 1.0126 68.6652 -2.2096 0.0542 90.0048 -230.9734
243 34 -1.0678 0.7133 1.5984 -6.4568 0.4620 90.2417 -3.0322 0.0992 92.7117 -170.3473
245 36 0.0652 0.2163 0.0196 -5.6170 0.3625 87.0411 -2.9153 0.1786 47.5906 -171.4998
281 31 -1.4160 1.4357 1.3966 -6.7188 0.7907 57.0919 -2.5738 0.1075 61.6247 -145.7426
323 52 0.1419 0.1080 0.1864 -5.4808 0.2947 101.9146 -2.5483 0.0990 65.5944 -239.4599
334 50 0.0370 0.1635 0.0084 -6.6837 0.4325 103.2977 -2.8439 0.0949 85.1932 -244.7426
338 34 -7.5728 726.6166 0.0789 -5.1221 0.1630 160.9520 -3.8005 0.1292 111.7644 -174.7609
340 48 0.7117 0.0708 7.1563 -7.8292 0.8429 72.7235 -2.0871 0.0527 82.7031 -209.0629
372 52 0.4290 0.0979 1.8797 -6.8047 0.4828 95.8998 -2.6939 0.0770 94.2339 -244.3363
374 42 -0.6194 0.3101 1.2371 -7.3694 0.7974 68.1088 -2.4621 0.0763 79.4199 -204.0764
389 39 -0.1840 0.1889 0.1793 -6.3034 0.4029 98.6256 -2.7765 0.0791 97.4621 -187.6983
422 59 -0.5256 0.2096 1.3177 -5.7331 0.1915 171.6271 -3.0935 0.0755 126.7576 -288.7924
432 44 0.2029 0.1618 0.2544 -5.3215 0.3231 87.6380 -2.9063 0.2095 40.3129 -211.3404

log(κ) log(p) log(q)

 

    Note: In italics problems in estimation 
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Table a3. Results of Hernes models-Women 

School N Estimate Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik
1 62 -3.7708 0.8738 16.2733 4.0057 0.8738 241.8952 2.0097 0.0142 285.1032 -292.1862

31 44 -2.8410 0.4062 19.8711 3.5283 0.4062 261.9430 1.9032 0.0159 228.1106 -197.5023
47 34 -4.1348 2.2456 7.6133 4.5423 2.2456 131.6321 1.9504 0.0381 99.7981 -178.2180
52 46 -1.9974 0.2151 18.5438 3.4278 0.2151 317.2360 1.6519 0.0163 167.6227 -201.2647
62 51 -2.9315 0.4270 20.1265 3.9302 0.4270 291.1080 1.6612 0.0169 163.4715 -247.3624
78 54 -2.8034 0.3557 22.0968 3.8534 0.3557 368.0943 1.9079 0.0136 266.8936 -255.6021
81 30 -4.6472 3.3454 6.4556 4.0018 3.3454 94.7500 2.1315 0.0393 115.7189 -137.2257

108 34 -3.6071 1.4204 9.1607 4.0608 1.4204 155.8016 2.0483 0.0239 175.8502 -160.8620
133 53 -2.2146 0.2129 23.0383 3.7575 0.2129 397.0877 1.6912 0.0137 208.2761 -249.3336
134 30 -3.0474 0.6992 13.2828 3.9219 0.6992 194.9441 1.8185 0.0242 136.5619 -146.3294
137 53 -2.2956 0.2451 21.5055 3.6665 0.2451 407.0047 2.0694 0.0174 246.2372 -240.1882
151 67 -2.3721 0.1878 29.9669 3.4286 0.1878 439.0833 1.8492 0.0112 304.1220 -296.1258
153 39 -2.4629 0.3238 18.7309 3.5392 0.3238 285.2757 1.6425 0.0188 143.5372 -176.2331
159 64 -3.1498 0.4840 20.4993 3.9742 0.4840 359.7727 1.9050 0.0128 284.2046 -301.3927
160 42 -3.2386 0.5640 18.5979 3.9801 0.5640 271.9583 1.8199 0.0178 185.8351 -206.9863
163 31 -2.2503 0.3889 13.0204 3.8146 0.3889 254.2428 1.6799 0.0244 115.5470 -145.8473
192 46 -2.9309 0.4483 19.1618 3.7678 0.4483 293.8123 1.8578 0.0157 219.9285 -214.8226
200 38 -3.1188 0.7664 12.6917 3.7549 0.7664 221.7116 1.9888 0.0207 190.8099 -169.8220
201 37 -2.7329 0.4707 15.8689 3.6266 0.4707 234.7586 1.6839 0.0213 133.0239 -168.4411
230 41 -2.5920 0.4393 15.2946 3.9306 0.4393 283.4075 1.8455 0.0181 188.0616 -195.0364
232 66 -2.4672 0.2221 27.4045 3.7131 0.2221 479.0285 1.8132 0.0113 291.7855 -304.3171
236 77 -2.6265 0.2334 29.5614 3.8889 0.2334 506.6553 1.7540 0.0098 315.0224 -366.1275
243 41 -7.5265 32.2251 1.7579 4.6419 32.2251 35.8345 2.3301 0.2800 19.3892 -189.5062
245 49 -2.1364 0.2113 21.6043 3.4773 0.2113 361.8309 1.6565 0.0153 179.8072 -217.6534
250 42 -2.2247 0.3082 16.0579 3.9662 0.3082 295.9784 1.7361 0.0174 173.3025 -203.3372
255 35 -2.2594 0.3224 15.8360 3.6456 0.3224 253.3644 1.7316 0.0208 144.0652 -162.2680
268 33 -2.5528 0.4972 13.1068 3.5027 0.4972 183.6890 1.6655 0.0236 117.3558 -146.2536
276 49 -2.1231 0.2307 19.5427 3.6375 0.2307 363.5849 1.8541 0.0162 212.2346 -222.3382
281 31 -2.5921 0.5134 13.0872 3.5729 0.5134 201.6333 1.8067 0.0235 138.8726 -139.1441
294 35 -2.3420 0.3976 13.7939 3.7847 0.3976 249.4800 1.8121 0.0210 156.4820 -163.1392
323 51 -2.4433 0.3019 19.7727 3.8573 0.3019 357.5547 1.6932 0.0150 191.3463 -240.8719
338 36 -2.2147 0.2808 17.4669 3.3873 0.2808 228.6359 1.7620 0.0207 149.7724 -160.9695
340 69 -1.9196 0.1396 26.3927 3.6716 0.1396 596.0396 1.8065 0.0124 262.2413 -311.5339
365 33 -2.3413 0.4392 12.4797 3.8446 0.4392 234.0941 2.1453 0.0305 150.6543 -154.7239
372 63 -2.8469 0.3549 22.8402 3.8553 0.3549 424.0568 2.0497 0.0121 347.9914 -291.6180
374 39 -4.4592 2.6750 7.4336 4.3343 2.6750 148.1226 2.1503 0.0318 145.2549 -186.5377
389 45 -2.3054 0.2915 18.2317 3.5997 0.2915 327.9196 1.7665 0.0167 186.2961 -201.8213
409 32 -3.4681 1.1734 10.2501 4.2744 1.1734 177.6906 2.0493 0.0230 182.8208 -161.0443
419 35 -2.3046 0.3911 13.5792 3.8475 0.3911 243.7828 1.7212 0.0210 141.1098 -165.7378
422 59 -2.7287 0.2950 25.2381 3.6853 0.2950 364.7411 1.6975 0.0129 223.9121 -273.2600
432 52 -3.2764 0.6880 15.6026 3.8300 0.6880 251.0206 1.8412 0.0189 179.1713 -236.6495

logit(σ) log(λ) log(β)
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Table a4. Results of gamma-mixed influence models-Women 

School N Estimate Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik
1 62 -0.8845 0.3177 2.4632 -4.9957 0.1577 158.2325 -2.7867 0.1072 72.4209 -290.2438

31 44 0.0197 0.1418 0.0027 -5.0880 0.3333 77.6692 -2.1310 0.1321 34.3691 -196.4451
47 34 -7.0698 962.3678 0.0519 -4.5381 0.1285 160.2145 -4.4463 0.5694 34.7211 -174.2028
52 46 0.1851 0.1246 0.2748 -4.2590 0.1942 93.3971 -2.7142 0.2104 35.0180 -200.5035
62 51 -1.0810 0.6989 1.6719 -3.5539 0.0710 177.8649 -7.3904 513.2809 0.1064 -236.9257
78 54 -0.0526 0.1176 0.0235 -5.5401 0.3191 96.1769 -2.4626 0.0948 63.9377 -253.8089
81 30 -0.9572 0.6249 1.4661 -5.1143 0.4204 62.2110 -2.4689 0.1722 35.4049 -136.0597

108 34 -0.7221 0.3361 1.5512 -5.5291 0.3243 94.2771 -2.7312 0.0962 77.5546 -160.4010
133 53 0.1266 0.1473 0.1088 -4.6022 0.1912 110.7860 -2.8410 0.2579 31.2935 -245.9989
134 30 -0.1612 0.3302 0.0787 -4.7051 0.4693 47.1680 -2.6672 0.4544 15.6553 -143.5792
137 53 0.2148 0.0874 0.5279 -6.6451 0.4362 101.2391 -2.2810 0.0533 97.6639 -240.9640
151 67 0.1954 0.0719 0.5310 -5.1394 0.2238 118.0187 -2.1484 0.0700 65.9007 -296.1056
153 39 0.0535 0.1772 0.0162 -3.7947 0.2082 69.1548 -2.8612 0.5090 16.0849 -171.7041
159 64 -0.5448 0.1599 1.8565 -5.0255 0.1554 162.5295 -2.8526 0.0833 97.6432 -299.2432
160 42 -0.2983 0.2854 0.3118 -4.4765 0.2618 76.5459 -2.8455 0.4022 20.1303 -202.2420
163 31 0.0303 0.2259 0.0041 -4.5545 0.3274 63.3574 -3.0065 0.3657 24.7152 -143.6757
192 46 -0.2443 0.1617 0.3692 -4.8128 0.2235 103.6463 -2.6120 0.1278 53.4033 -212.7647
200 38 -0.3782 0.1839 0.7777 -5.4654 0.3353 89.0793 -2.4395 0.0777 76.5640 -169.7918
201 37 -0.3389 0.2950 0.3894 -3.6966 0.2037 67.0791 -3.2702 0.9419 11.3544 -164.1486
230 41 -0.1828 0.1866 0.1791 -5.2302 0.2782 98.3188 -2.8389 0.1352 59.6084 -193.9221
232 66 -0.0170 0.0931 0.0031 -5.0186 0.1822 138.2316 -2.6018 0.0860 78.7238 -302.8154
236 77 -0.3420 0.1413 0.8282 -4.5409 0.1136 181.5113 -3.1231 0.1634 59.6882 -361.3828
243 41 -8.6727 1272.4327 0.0591 -4.3373 0.1369 137.4270 -3.2875 0.1459 74.0801 -184.5004
245 49 0.2361 0.1151 0.4843 -4.2525 0.2047 88.3421 -2.6034 0.2283 29.6818 -215.1431
250 42 -0.0782 0.2543 0.0241 -4.9419 0.2395 101.9805 -3.1414 0.3052 32.3309 -201.4717
255 35 0.2066 0.1943 0.2197 -4.7428 0.3604 62.4152 -2.5274 0.3188 20.0363 -160.6536
268 33 -0.3367 0.3065 0.3699 -3.6827 0.2216 61.2074 -3.1966 0.8392 12.1768 -143.4745
276 49 0.1662 0.1091 0.2532 -5.4203 0.2569 114.3543 -2.5416 0.0864 74.7629 -222.9686
281 31 -0.0787 0.2091 0.0296 -4.6765 0.3388 64.5482 -2.5028 0.2071 30.2525 -138.4490
294 35 -0.0405 0.1939 0.0084 -5.1115 0.2978 87.7243 -2.7703 0.1577 48.6817 -162.6326
323 51 -0.2686 0.1989 0.3627 -4.3632 0.1653 115.1661 -3.2666 0.3149 33.8870 -237.1138
338 36 0.6320 0.1263 3.1623 -5.4025 0.9165 31.8467 -1.5944 0.2568 9.8976 -159.2516
340 69 0.3314 0.0662 1.6579 -5.5763 0.2165 143.6014 -2.5469 0.0578 112.3010 -311.4319
365 33 0.1049 0.1624 0.0678 -6.9339 0.6733 71.4101 -2.5080 0.0795 79.1630 -155.2404
372 63 -0.1905 0.0947 0.3832 -6.1790 0.2529 150.9947 -2.4888 0.0378 163.9053 -291.6132
374 39 -0.9583 0.3591 2.5578 -5.8281 0.3371 100.7696 -2.7750 0.0738 104.2819 -185.5049
389 45 0.0237 0.1262 0.0045 -4.7785 0.2316 98.5903 -2.6278 0.1211 57.0045 -201.3019
409 32 -0.1792 0.2369 0.1355 -6.4314 0.8250 50.1376 -2.5764 0.1464 45.3337 -159.7454
419 35 -0.1619 0.2824 0.0928 -4.6571 0.2593 83.6548 -3.1127 0.3595 26.9502 -164.1451
422 59 -0.3939 0.2251 0.6893 -3.8497 0.1250 118.5931 -3.2760 0.5744 18.6832 -266.8423
432 52 -0.7708 0.2493 2.3830 -4.2814 0.1553 118.0041 -3.0064 0.1904 47.4699 -233.4154

log(κ) log(p) log(q)

 

    Note: In italics problems in estimation 

 

 

 

 


